

Welcome to SMOOTH’s documentation!

Contents:

	Getting started
	Documentation

	Installing smooth

	General concept

	Structure of the SMOOTH module

	Components

	Examples

	Framework

	Optimization

	Got further questions on using SMOOTH?

	License

	smooth.components package
	Building a component

	Artificial costs

	Foreign states

	Financials

	Component - The mother class of all components

	Air Source Heat Pump

	Battery

	Biogas Converter

	Biogas Steam Methane Reformer with Pressure Swing Adsorption

	Compressor (Hydrogen)

	Electric Heater

	Electrolyzer (alkaline)

	Electrolyzer Waste Heat (alkaline)

	Energy Demand from CSV

	Energy Source from CSV

	Fuel cell CHP

	Gas Engine CHP Biogas

	Gate

	H2 Refuel Cooling System

	H2 CHP

	PEM Electrolyzer

	Power Converter

	Sink

	Storage H2

	Stratified Thermal Storage

	Supply

	Trailer Gate

	Trailer Gate Cascade

	Trailer H2 Delivery

	Trailer H2 Delivery Cascade

	Trailer H2 Delivery Single

	Variable Grid

	External Components

	H2 Dispenser

	Submodules

	Module contents

	smooth.examples package
	Submodules

	Example Model

	Example Model (costs)

	Example Model (dict)

	Example Model (emissions)

	Example Model (external components)

	Example Model (plotting dicts)

	Run Optimization Example

	Run Smooth Example

	Module contents

	smooth.framework package
	Subpackages

	Submodules

	Run SMOOTH

	Simulation Parameters

	Module contents

	smooth.optimization package
	Subpackages

	Submodules

	Run Optimization

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Getting started

SMOOTH stands for “Simulation Model for Optimized Operation and Topology of Hybrid energy systems”. This
tool serves to minimise costs and maximise the sustainability of dynamic energy systems. The key features
of SMOOTH are:

	The real world energy system is reduced to its relevant components

	Detailed modelling of components including non-linear component behaviour, state-dependent component behaviour
and tracking arbitrary states of the components

	Stepwise simulation without using perfect foresight

	Parameter optimization possible in combination with a genetic algorithm

	Documentation

	Installing smooth

	General concept

	Structure of the SMOOTH module

	Components

	Examples

	Framework

	Optimization

	Got further questions on using SMOOTH?

	License

Documentation

Full documentation can be found here [https://smooth.readthedocs.io/en/latest/]

Installing smooth

In order to use SMOOTH, the smooth package and its requirements need to be installed. There
is the option to clone the current repository of SMOOTH to your local machine using:

git clone https://github.com/rl-institut/smooth

The necessary requirements (found in requirements.txt in repository) are installed into a
working Python3 environment by:

pip install -r requirements.txt

SMOOTH is then installed by:

python setup.py install

You also need to install the solver for oemof. This can be done according to
this [https://oemof-solph.readthedocs.io/en/latest/readme.html#installing-a-solver]
documentation page.

General concept

SMOOTH solves an explicitly defined energy system with several components, such as energy sources, electrolyzers, storages etc.
The energy system is parameterized with the help of different input parameters such as investment and operating costs as well as
site-related time series with a fixed time resolution. While the components and the algorithm executing the simulation are part of
SMOOTH, each component creates a valid oemof model for each time step and the system is solved using
oemof-solph [https://oemof.readthedocs.io/en/release-v0.1/oemof_solph.html]. The financial costs/revenues and emissions, where
the costs are divided into variable costs, CAPEX and OPEX, are tracked for each component individually. After the simulation, all
costs/revenues and emissions are transferred to annuities (kg/a and EUR/a, respectively) based on the component lifetimes, and the
total system financial and emissions annuities are recorded. The notable states of the components and the energy and mass flows of
the system are also recorded and all results can be saved for later use.

An additional functionality of SMOOTH is the optimization (MOEA) which optimizes the topology and operational management of an
energy system with regards to ecological and economic target criteria. Key parameters of components are chosen, such as the
maximum power output or capacity, and varied in numerous versions of the energy system until the optimal solution/s is/are
reached. The specification of the final system/s is/are finally returned as SMOOTH results.

Structure of the SMOOTH module

The SMOOTH module consists of four sections: components, examples, framework and optimization.

Components

The smooth.components package contains all of the existing components of an energy
system that have already been built in SMOOTH, along with any related functions. Input parameters
that are defined by the user in the model definition, or by default values that are specified within
the component, are used to calculate and determine the behaviour of the component for each timestep.
Within each component, an oemof component is created using the parameters defined or
calculated in the SMOOTH component to be used later in the oemof model. Visit the section for
detailed information on each of the components and how to build a new component.

Examples

In order to get a better, applied understanding of how to define a model, and either run a simulation
or an optimization, see the examples directory [https://github.com/rl-institut/smooth/tree/dev/smooth/examples]
for examples, and the smooth.examples package for corresponding explanations.

Framework

The smooth.framework package consists of the main function that runs the SMOOTH simulation
framework (the run_smooth() function) as well as other functions that are necessary for
updating and evaluating the simulation results (in the smooth.framework.functions package).
An outline and brief description of the available functions in the framework is presented below:

	run_smooth(): the main function which enables the simulation in SMOOTH,
and must be called by the user.

	calculate_external_costs(): calculates costs for components
in the system which are not part of the optimization but their costs should be taken into
consideration. This function can be called in the same file as the run_smooth function.

	debug(): generates debugging information from
the results, and prints, plots and saves them. It is called in the run_smooth function if the
user sets the show_debug_flag parameter as True in the simulation parameters.

	load_results(): loads the saved results of either a
simulation or optimization. Can be called by the user in a file where the results are
evaluated.

	plot_results(): plots results of a SMOOTH run, which can
be called after the simulation/optimization results are obtained.

	print_results(): prints the financial results of a
SMOOTH run, which can be called after the simulation/optimization results are obtained.

	save_results(): saves the results of either a SMOOTH
run or an optimization, which can be called after the results are obtained.

	update_annuities(): calculates and updates the financial
and emission annuities for the components used in the system. It is called in the
generic Component class, which is used to define each component.

	update_fitted_costs(): calculates the fixed costs and fixed emissions of a component. The user can define the dependencies on certain values using a set of specific fitting methods. This function is also called in the generic Component class, which is used to define each component.

Optimization

The genetic algorithm used for the optimization in SMOOTH is defined in the
smooth.optimization package, along with instructions on how to use it.

Got further questions on using SMOOTH?

Contact …

License

SMOOTH is licensed under the Apache License, Version 2.0 or the MIT license, at your option.
See the COPYRIGHT file [https://github.com/rl-institut/smooth/blob/dev/COPYRIGHT] for details.

smooth.components package

This section first explains how to create a new component and what are their generic
properties. Listed below are components that can already be used in an energy system
model (see examples directory [https://github.com/rl-institut/smooth/tree/dev/smooth/examples]
for the usage of components in an energy system).

Building a component

In order to build a component, you must do the following:

	Create a subclass of the mother Component (or External Component) class.

	In the __init__() function, define all parameters that are specific to your component, and set default values.

	Consider if the component requires variable artificial costs depending on system behaviour. If it does, the method for setting the appropriate costs has to be defined in the prepare_simulation() function of the new component.

	Define any other functions that are specific to your component.

	All components built in SMOOTH must be created as oemof components to be used in the oemof model (see oemof-solph’s component list [https://oemof-solph.readthedocs.io/en/latest/usage.html#solph-components] to choose the best fitting component). Then add the component to your oemof model using the add_to_oemof_model() function, defining all of the necessary parameters.

	If the states of the component need updating after each time step, specifiy these in the update_states() function.

Artificial costs

The oemof framework always solves the system by minimizing the costs. In order to be able to control the system behaviour in a certain way,
artificial costs as a concept is introduced. These costs are defined in the components and are used in the oemof model (and therefore
have an effect on the cost minimization). While artificial costs are treated the same way as real costs by the oemof solver, they are
being neglected in the financial evaluation at the end of the simulation. Unwanted system behaviour can be avoided by setting high (more positive)
artificial costs, while the solver can be incentivised to choose a desired system behaviour by implementing lower (more negative) artificial costs.

Foreign states

Some component behaviour is dependant on so called foreign states - namely a state or attribute of another component (e.g. the
artificial costs of the electricity grid can be dependant on a storage state of charge in order to fill the storage with grid
electricity when the storage is below a certain threshold). While the effect of the foreign states is determined in the component itself,
the mechanics on how to define the foreign states is the same for each component. Foreign states are always defined by the attributes:

	fs_component_name: string (or list of strings for multiple foreign states) of the foreign component

	fs_attribute_name: string (or list of strings for multiple foreign states) of the attribute name of the component

If a fixed value should be used as a foreign state, here fs_component_name has to be set to None and fs_attribute_name has to be
set to the numerical value.

Financials

The costs and revenues are tracked for each component individually. There are three types of costs that are taken into
consideration in the energy system, namely capital expenditures (CAPEX), operational expenditures (OPEX) and variable
costs. The CAPEX costs are fixed initial investment costs (EUR), the OPEX costs are the yearly operational and
maintenance costs (EUR/a) and the variable costs are those that are dependant on the use of the component in the
system, such as the cost of buying/selling electricity from/to the grid (EUR/unit).

The ﬁnancial analysis is based on annuities of the system. The CAPEX cost of a component for one year is calculated
by taking into consideration both the lifetime of the given component and the interest rate, and the OPEX costs remains
the same because they are already as annuities. The variable cost annuities for the components are calculated by
converting the summed variable costs over the simulation time to the summed variable costs over a one year period.
If the simulation time is a year, the variable cost annuities are simply the summed variable costs for a year. The
below equations demonstrate how the CAPEX and variable costs are calculated. For more information on the financial
analysis and the possible fitting methods for the costs, refer to the update_annuities and update_fitted_cost modules in
the smooth.framework.functions package.

\[CAPEX_{annuity} = CAPEX \cdot \frac{I \cdot (1 + I)^L}{(1 + I)^L -1}\]

\[VC_{annuity} = \sum VC \cdot \frac{365}{S}\]

	\(CAPEX_{annuity}\) = CAPEX annuity [EUR/a]

	\(CAPEX\) = total CAPEX [EUR]

	\(I\) = interest rate [-]

	\(L\) = component life time [a]

	\(VC_{annuity}\) = annual variable costs [EUR/a]

	\(VC\) = total variable costs [EUR]

	\(S\) = number of simulation days [days]

Component - The mother class of all components

The generic component class is the mother class for all of the components. The parameters and
functions defined here are inherited by each of the specific components.

	
class smooth.components.component.Component

	Bases: object

	Parameters

	
	component (str) – component type

	name (str) – specific name of the component (must be different to other
component names in the system)

	life_time (numerical) – lifetime of the component [a]

	sim_params (object) – simulation parameters such as the interval time and interest rate

	results (dict) – dictionary containing the main results for the component

	states (dict) – dictionary containing the varying states for the component

	variable_costs (numeric) – variable costs of the component [EUR/*]

	artificial_costs (numeric) – artificial costs of the component [EUR/*] (Note: these
costs are not included in the final financial analysis)

	dependency_flow_costs (tuple) – flow that the costs are dependent on

	capex (dict) – capital costs

	opex (dict) – operational and maintenance costs

	variable_emissions (float) – variable emissions of the component [kg/*]

	dependency_flow_emissions (tuple) – flow that the emissions are dependent on

	op_emissions (dict) – operational emission values

	fix_emissions (dict) – fixed emission values

	fs_component_name (str) – foreign state component name

	fs_attribute_name (str) – foreign state attribute name

	
add_to_oemof_model(busses, model)

	This function adds the specific component to the oemof energy system model
and has to be defined for each component.

	Parameters

	
	busses (dict) – Dict of the virtual buses used in the energy system

	model (oemof model) – current oemof model

	Raises

	NotImplementedError – NotImplementedError raised if the function is
not overwritten in specific component definition.

	
check_validity()

	This function is called immediately after the component object is created
and checks if the component attributes are valid.

	Raises

	ValueError – Value error raised if the life time is not defined or is less
than or equal to 0

	
generate_results()

	Generates the results after the simulation.

	Returns

	Results for the calculated emissions, financials and annuities

	
get_costs_and_art_costs()

	Initialize the total variable costs and art. costs [EUR/*]

	Returns

	The total variable costs (including artificial costs)

	
get_foreign_state_value(components, index=None)

	Get a foreign state attribute value with the name fs_attribute_name
of the component fs_component_name. If the fs_component_name is None
and the fs_attribute_name set to a number, the number is given back instead.

	Parameters

	
	components (object) – List containing each component object

	index (int, optional) – Index of the foreign state (should be None if there
is only one foreign state) [-]

	Returns

	Foreign state value

	
prepare_simulation(components)

	Prepares the simulation. If a component has artificial costs, this
prepare_simulation function is overwritten in the specific component.

	Parameters

	components (list) – List containing each component object

	Returns

	If used as a placeholder, nothing will be returned. Else, refer to
specific component that uses the prepare_simulation function for further detail.

	
set_parameters(params)

	Sets the parameters that have been defined by the user (in the model definition) in
the necessary components, overwriting the default parameter values. Errors are raised if:
- the given parameter is not part of the component
- the dependency flows have not been defined

	Parameters

	params (dict ToDo: make sure of this, maybe list) – The set of parameters defined in the specific component class

	Raises

	ValueError – Value error is raised if the parameter defined by the user
is not part of the component, or dependency flows are not defined

	Returns

	None

	
update_constraints(busses, model_to_solve)

	Sometimes special constraints are required for the specific components,
which can be written here. Else, this function is used as placeholder for
components without constraints.

	Parameters

	
	busses (dict) – Dict of the virtual buses used in the energy system

	model_to_solve – ToDo: look this up in oemof

	Returns

	If used as a placeholder, nothing will be returned. Else, refer
to specific component that uses the update_constraints function for
further detail.

	
update_flows(results, comp_name=None)

	Updates the flows of a component for each time step.

	Parameters

	
	results (object) – The oemof results for the given time step

	comp_name (str, optional) – The name of the component - while components can generate more
than one oemof model, they sometimes need to give a custom name, defaults to None

	Returns

	updated flow values for each flow in the ‘flows’ dict

	
update_states(results)

	Updates the states, used as placeholder for components without states.
If a component has states, this update_states function is overwritten in the
specific component.

	Parameters

	results (object) – oemof results object for the given time step

	Returns

	if used as a placeholder, nothing will be returned. Else, refer to
specific component that uses the update_states function for further detail.

	
update_var_costs()

	Tracks the cost and artificial costs of a component for each time step.

	Returns

	New values for the updated variable and artificial costs stored in
results[‘variable_costs’] and results[‘art_costs’] respectively

	
update_var_emissions()

	Tracks the emissions of a component for each time step.

	Returns

	A new value for the updated emissions stored in results[‘variable_emissions’]

Air Source Heat Pump

This module represents an air source heat pump that uses ambient air and
electricity for heat generation, based on oemof thermal’s component.

Scope

Air source heat pumps as a means of heat generation extract outside air and
increase its temperature using a pump that requires electricity as an input.
These components have the potential for the efficient utilization of
energy production and distribution in a system, particularly in times of
high renewable electricity production coupled with a high thermal demand.

Concept

The basis for the air source heat pump component is obtained from the oemof
thermal component, in particular using the cmpr_hp_chiller function to
pre-calculate the coefficient of performance. For further information
on how this function works, visit oemof thermal’s readthedocs site [1].

[image: air_source_heat_pump.png]

Fig.1: Simple diagram of an air source heat pump.

References

[1] oemof thermal (2019). Compression Heat Pumps and Chillers, Read the Docs:
https://oemof-thermal.readthedocs.io/en/latest/compression_heat_pumps_and_chillers.html

	
class smooth.components.component_air_source_heat_pump.AirSourceHeatPump(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the air source heat pump component

	bus_el (str) – electrical bus input of the heat pump

	bus_th – thermal bus output of the heat pump

	power_max (numerical) – maximum heating output [W]

	life_time (numerical) – life time of the component

	csv_filename (str) – csv filename containing the desired timeseries,
e.g. ‘my_filename.csv’

	csv_separator (str) – separator of the csv file, e.g. ‘,’ or ‘;’ (default is ‘,’)

	column_title (str or int) – column title (or index) of the timeseries, default is 0

	path (str) – path where the timeseries csv file can be located

	temp_threshold_icing (numerical) – temperature below which icing occurs [K]

	temp_threshold_icing_C (numerical) – converts to degrees C for oemof thermal function [C]

	temp_high (numerical) – output temperature from the heat pump [K]

	temp_high_C (numerical) – converts to degrees C for oemof thermal function [C]

	temp_high_C_list (list) – converts to list for oemof thermal function

	temp_low (numerical) – ambient temperature [K]

	temp_low_C (numerical) – converts to degrees C for oemof thermal function [C]

	quality_grade (numerical) – quality grade of heat pump [-]

	mode (str) – can be set to heat_pump or chiller

	factor_icing (numerical) – COP reduction caused by icing [-]

	set_parameters – updates parameter default values (see generic Component class)

	cops (numerical) – coefficient of performance (pre-calculated by oemof thermal function)

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from information given in
the AirSourceHeatPump class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

Battery

This module represents a stationary battery.

Scope

Batteries are crucial in effectively integrating high shares of renewable
energy electricity sources in diverse energy systems. They can be particularly
useful for off-grid energy systems, or for the management of grid stability
and flexibility. This flexibility is provided to the energy system by the
battery in times where the electric consumers cannot.

Concept

The battery component has an electricity bus input and output, where factors
such as the charging and discharging efficiency, the loss rate, the C-rates
and the depth of discharge define the electricity flows.

[image: battery.png]

Fig.1: Simple diagram of a battery storage.

Wanted storage level

Within this component, there is the possibility to choose a wanted
storage level that the energy system should try to maintain when it
feasibly can. If the state of charge level wanted is defined, the variable
artificial costs change depending on whether the storage level is above or
below the desired value. If the battery level is too low, the artificial
costs of storing electricity into the battery can be reduced and the costs
of extracting electricity from the battery can be increased to incentivise
the system to maintain the wanted storage level.

Maximum chargeable/dischargeable energy

The maximum power [W] going in to or out of the battery are dependent on
the C-rate and the capacity:

\[\begin{align}\begin{aligned}P_{in,max} = E_{cap} \cdot C_{r,charge}\\P_{out,max} = E_{cap} \cdot C_{r,discharge}\end{aligned}\end{align} \]

	\(P_{in,max}\) = maximum power flowing from bus to battery [W]

	\(E_{cap}\) = battery capacity [Wh]

	\(C_{r,charge}\) = C-Rate for charging [W/Wh]

	\(P_{out,max}\) = maximum power flowing from battery to bus [W]

	\(C_{r,discharge}\) = C-Rate for discharging [W/Wh]

[image: battery.png]

Fig.2: Diagram of the battery component including losses.

The amount of energy that the battery will be charged or discharged
takes the energy losses during the (dis-)charging process into account:

\[\begin{align}\begin{aligned}P_{charge,max} = P_{in,max} \cdot \mu_{charge}\\P_{out,max} = P_{discharge,max} \cdot \mu_{discharge}\end{aligned}\end{align} \]

	\(P_{charge,max}\) = maximum chargeable power at the battery [W]

	\(\mu_{charge}\) = charging efficiency [-]

	\(P_{discharge,max}\) = maximum dischargeable power at the battery [W]

	\(\mu_{discharge}\) = discharging efficiency [-]

	
class smooth.components.component_battery.Battery(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the battery component

	bus_in_and_out (str) – electricity bus the battery is connected to

	battery_capacity (numerical) – battery capacity (assuming all the capacity
can be used) [Wh]

	soc_init (numerical) – initial state of charge [-]

	efficiency_charge (numerical) – charging efficiency [-]

	efficiency_discharge (numerical) – discharging efficiency [-]

	loss_rate (numerical) – loss rate [%/day]

	symm_c_rate (boolean) – flag to indicate if the c-rate is symmetrical

	c_rate_symm (numerical) – C-Rate for charging and discharging (only used if symm_c_rate==True) [-/h]

	c_rate_charge (numerical) – C-Rate for charging [-/h]

	c_rate_discharge (numerical) – C-Rate for discharging [-/h]

	soc_min (numerical) – minimal state of charge [-]

	life_time (numerical) – life time of the component [a]

	vac_in (numerical) – normal variable artificial costs for charging (in)
the battery [EUR/Wh]

	vac_out (numerical) – normal variable artificial costs for discharging (out)
the battery [EUR/Wh]

	soc_wanted (numerical) – if a soc level is set as wanted, the vac_low costs
apply if the capacity is below that level [Wh]

	vac_low_in (numerical) – variable artificial costs that apply (in) if the capacity
level is below the wanted capacity level [EUR/Wh]

	vac_low_out (numerical) – variable artificial costs that apply (in) if the capacity
level is below the wanted capacity level [EUR/Wh]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	soc (numerical) – state of charge [-]

	p_in_max (numerical) – max. chargeable power [W]

	p_out_max (numerical) – max. dischargeable power [W]

	loss_rate – adjusted loss rate to chosen timestep [%/timestep]

	current_vac (list) – current artificial costs for input and output [EUR/Wh]

	
add_to_oemof_model(busses, model)

	Creates an oemof Generic Storage component from the information given in
the Battery class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
check_flows()

	Checks if there are flows in and out of the battery and if so triggers an AssertionError

	Raises

	ValueError if flows in and out of the battery at the same time are detected

	
prepare_simulation(components)

	Prepares the simulation by setting the appropriate artificial costs

	Parameters

	components (list) – List containing each component object (unused in this component)

	
update_flows(results, comp_name=None)

	Update flow values for each flow in the ‘flows’ dict of results

	Parameters

	
	results (object) – The oemof results for the given time step

	comp_name (str, optional) – The name of the component - while components can generate more
than one oemof model, they sometimes need to give a custom name, defaults to None

	
update_states(results)

	Updates the states of the battery component for each time step

	Parameters

	results (object) – oemof results for the given time step

	Returns

	updated state values for each state in the ‘state’ dict

Biogas Converter

This module represents the conversion of a biogas input in m3 to kg, where the
biogas composition is defined.

Scope

The biogas converter component is a virtual component, so would not be found in
a real life energy system. Its purpose is to transform a biogas bus with m3 units
into a biogas bus with kg units. This might be necessary because the Biogas SMR
PSA component, for instance, requires a biogas input in kg.

Concept

The biogas converter component takes in a biogas bus as an input and outputs a
different biogas bus. The composition of the biogas is defined, as well as
the energy content per m3 of biogas.

Biogas composition

The user can determine the desired composition of biogas by stating the
percentage share of methane and carbon dioxide in the gas. The default
share is chosen to be 75.7% methane, 24.3% carbon dioxide [1]. The lower
heating value (LHV) of methane is 13.9 kWh/kg [2], and the molar masses
of methane and carbon dioxide are 0.01604 kg/mol and 0.04401 kg/mol,
respectively. The method used to calculate the LHV of biogas is the same
as in the Gas Engine CHP Biogas component, and the equation used is as follows:

\[LHV_{Bg} = \frac{CH_{4_{share}} \cdot M_{CH_{4}}}{CH_{4_{share}} \cdot
M_{CH_{4}} + CO_{2_{share}} \cdot M_{CO_{2}}} \cdot LHV_{CH_{4}} \]

	\(LHV_{Bg}\) = heating value of biogas [kWh/kg]

	\(CH_{4_{share}\) = proportion of methane in biogas [-]

	\(M_{CH_{4}}\) = molar mass of methane [kg/mol]

	\(CO_{2_{share}}\) = proportion of carbon dioxide in biogas [-]

	\(M_{CO_{2}}\) = molar mass of carbon dioxide [kg/mol]

	\(LHV_{CH_{4}}\) = heating value of methane [kWh/kg]

References

[1] Braga, L. B. et.al. (2013). Hydrogen production by biogas steam reforming:
A technical, economic and ecological analysis, Renewable and Sustainable
Energy Reviews.
[2] Linde Gas GmbH (2013). Rechnen Sie mit Wasserstoff. Die Datentabelle.

	
class smooth.components.component_biogas_converter.BiogasConverter(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the biogas converter component

	bg_in (str) – input biogas bus

	bg_out (str) – output biogas bus

	ch4_share (numerical) – proportion of methane in biogas [-]

	co2_share (numerical) – proportion of carbon dioxide in biogas [-]

	kwh_1m3_bg (numerical) – energy content in 1m3 biogas [kWh/m3]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	mol_mass_ch4 (numerical) – molar mass of methane [kg/mol]

	mol_mass_co2 (numerical) – molar mass of carbon dioxide [kg/mol]

	heating_value_ch4 (numerical) – heating value of methane [kWh/kg]

	heating_value_bg (numerical) – heating value of biogas [kWh/kg]

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from the information given in the
BiogasConverter class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

Biogas Steam Methane Reformer with Pressure Swing Adsorption

This module represents a biogas steam methane reformer that produces hydrogen,
combined with the pressure swing adsorption process to produce 99.9 %
pure hydrogen.

Scope

The primary production of hydrogen is currently from the process
of steam methane reforming (SMR), using natural gas as the feed material. Biogas
can be used as an alternative feed material, which has a similar composition to
natural gas. The utilisation of biogas can be beneficial due to biogas
being a renewable resource, and its usage can lead to less methane emissions
in the atmosphere. Pressure swing adsorption (PSA) is a process used in
combination with SMR to purify the output hydrogen stream to a level of
approximately 99.9 % [1].

Concept

The biogas SMR PSA component takes in a biogas bus and electricity bus as
inputs, with a hydrogen bus output. An oemof Transformer component is
chosen for this component, and is illustrated in Figure 1.

[image: steam_methane_reformer.png]

Fig.1: Simple diagram of a biogas steam methane reformer

Hydrogen production from SMR

The amount of hydrogen produced in SMR from the chosen composition
of biogas is calculated based on results from [2]. The default amount of
input fuel required to produce 1kg of H2 is 45.977 kWh, and using
this value along with the LHV of biogas, the amount of biogas
required to produce 1kg of H2 is determined:

\[Bg_{kg H2} = \frac{fuel_{kg H2}}{LHV_{Bg}}\]

	\(Bg_{kg H2}\) = biogas required to produce one kg H2 [kg]

	\(fuel_{kg H2}\) = specific fuel consumption per kg of H2 produced [kWh/kg]

	\(LHV_{Bg}\) = heating value of biogas [kWh/kg]

In order to calculate how much hydrogen will be produced in SMR from the input
amount of biogas, the conversion efficiency is calculated:

\[smr_{eff} = \frac{1}{Bg_{kg H2}}\]

	\(smr_{eff}\) = conversion efficiency of biogas to hydrogen in SMR process [-]

Hydrogen purification with PSA

The hydrogen produced in SMR contains many impurities such as carbon dioxide
and carbon monoxide, and these can be removed using the PSA process.
The default efficiency of the PSA process is taken to be 90 % [3], so the
overall efficiency of the SMR PSA process is determiend by:

\[overall_{eff} = smr_{eff} \cdot psa_{eff}\]

	\(overall_{eff}\) = overall efficiency of biogas to 99.9 % pure hydrogen in
SMR and PSA process [-]

	\(psa_{eff}\) = efficiency of inpure to pure hydrogen is PSA process [-]

Energy consumption

The default energy consumption of the combined SMR and PSA process per kg of
H2 produced is 5.557 kWh/kg [1]. Thus the energy consumption per kg of biogas
used is:

\[EC_{kg Bg} = \frac{5.557}{Bg_{kg H2}} * 1000\]

	\(EC_{kg Bg}\) = energy required per kg of biogas used [Wh/kg]

References

[1] Song, C. et.al. (2015). Optimization of steam methane reforming coupled
with pressure swing adsorption hydrogen production process by heat integration,
Applied Energy.
[2] Minh, D. P. et.al. (2018). Hydrogen Production From Biogas Reforming:
An Overview of Steam Reforming, Dry Reforming, Dual Reforming and
Tri-Reforming of Methane.
[3] Air Liquide Engineering & Construction (2021). Druckwechseladsorption
Wasserstoffreinigung Rückgewinnung und Reinigung von Wasserstoff durch PSA.

	
class smooth.components.component_biogas_smr_psa.BiogasSmrPsa(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the biogas SMR PSA component

	bus_bg (str) – biogas bus that is the input of the component

	bus_el (str) – electricity bus that is the input of the component

	bus_h2 (str) – 99.9 % pure hydrogen bus that is the output of the component

	life_time (numerical) – lifetime of the component [a]

	input_max (numerical) – maximum biogas input per interval [kg/*]

	fuel_kwh_1kg_h2 (numerical) – specific fuel consumption per kg of H2 produced [kWh/kg]

	psa_eff (numerical) – efficiency of the PSA process [-]

	energy_cnsmp_1kg_h2 (numerical) – specific energy consumption of the combined SMR and PSA
process in terms of hydrogen production [kWh/kg]

	set_parameters(params) (function) – updates parameter default values (see generic Component
class)

	smr_psa_eff (numerical) – total efficiency of biogas to 99.9 % pure hydrogen in SMR and
PSA process [-]

	energy_cnsmp_1kg_bg (numerical) – specific energy consumption of the combined SMR and PSA
process in terms of biogas consumption [Wh/kg]

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component using the information given in
the BiogasSteamReformer class, to be used in the oemof model

	Parameters

	
	busses (dict) – buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
prepare_simulation(components)

	Prepares the simulation by calculating the specific compression energy

	Parameters

	components (list) – list containing each component object

	Returns

	the specific compression energy [Wh/kg]

Compressor (Hydrogen)

This module represents a hydrogen compressor.

Scope

A hydrogen compressor is used in energy systems as a means of increasing
the pressure of hydrogen to suitable levels for feeding into other components
in the system or satisfying energy demands.

Concept

The hydrogen compressor is powered by electricity and intakes a low
pressure hydrogen flow while outputting a hgh pressure hydrogen flow.
The efficiency of the compressor is assumed to be 88.8%.

[image: hydrogen_compressor.png]

Fig.1: Simple diagram of a hydrogen compressor.

Specific compression energy

The specific compression energy is calculated by first obtaining the
compression ratio:

\[p_{ratio} = \frac{p_{out}}{p_{in}}\]

	\(p_{ratio}\) = compression ratio

	\(p_{out}\) = outlet pressure [bar]

	\(p_{in}\) = inlet pressure [bar]

Then the output temperature is calculated, and the initial assumption
for the polytropic exponent is assumed to be 1.6:

\[T_{out} = min(max(T_{in}, T_{in} \cdot p_{ratio} ^ \frac{n_{init} - 1}{n_{init}}),
T_{in} + 60)\]

	\(T_{out}\) = output temperature [K]

	\(T_{in}\) = input temperature [K]

	\(n_{init}\) = initial polytropic exponent

Then the temperature ratio is calculated:

\[T_{ratio} = \frac{T_{out}}{T_{in}}\]

	\(T_{ratio}\) = temperature ratio

Then the polytropic exponent is calculated:

\[n = \frac{1}{1 - \frac{log_{T_{ratio}}}{log_{p,ratio}}}\]

The compressibility factors of the hydrogen entering and leaving
the compressor is then calculated using interpolation considering
varying temperature, pressure and compressibility factor values
(see the calculate_compressibility_factor function). The real
gas compressibility factor is calculated using these two values
as follows:

\[Z_{real} = \frac{Z_{in} + Z_{out}}{2}\]

	\(Z_{real}\) = real gas compressibility factor

	\(Z_{in}\) = compressibility factor on entry

	\(Z_{out}\) = compressibility factor on exit

Thus the specific compression work is finally calculated:

\[c_{w_{1}} = \frac{1}{\mu} \cdot R_{H_{2}} \cdot T_{in} \cdot \frac{n}{n-1}
\cdot p_{ratio} ^ {(\frac{n-1}{n} -1)} \cdot \frac{Z_{real}}{1000}\]

	\(c_{w_{1}}\) = specific compression work [kJ/kg]

	\(\mu\) = compression efficiency

	\(R_{H_{2}}\) = hydrogen gas constant

Finally, the specific compression work is converted into the amount of
electrical energy required to compress 1 kg of hydrogen:

\[c_{w_{2}} = \frac{c_{w_{1}}}{3.6}\]

	\(c_{w_{2}}\) = specific compression energy [Wh/kg]

	
class smooth.components.component_compressor_h2.CompressorH2(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the compressor component

	bus_h2_in (str) – lower pressure hydrogen bus that is an input of
the compressor

	bus_el (str) – electricity bus that is an input of the compressor

	bus_h2_out (str) – higher pressure hydrogen bus that is the output
of the compressor

	m_flow_max (numerical) – maximum mass flow through the compressor [kg/h]

	life_time (numerical) – life time of the component [a]

	temp_in (numerical) – temperature of hydrogen on entry to the compressor [K]

	efficiency (numerical) – overall efficiency of the compressor [-]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	spec_compression_energy (numerical) – specific compression energy
(electrical energy needed per kg H2) [Wh/kg]

	R (numerical) – gas constant (R) [J/(K*mol)]

	Mr_H2 (numerical) – molar mass of H2 [kg/mol]

	R_H2 (numerical) – specific gas constant for H2 [J/(K*kg)]

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component using the information given in
the CompressorH2 class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
prepare_simulation(components)

	Prepares the simulation by calculating the specific compression energy

	Parameters

	components (list) – list containing each component object

	Returns

	the specific compression energy [Wh/kg]

	
update_states(results)

	Updates the states in the compressor component

	Parameters

	results (object) – oemof results object for the given time step

	Returns

	updated values for each state in the ‘states’ dict

	
smooth.components.component_compressor_h2.calculate_compressibility_factor(p_in, p_out, temp_in, temp_out)

	Calculates the compressibility factor through interpolation.

	Parameters

	
	p_in (numerical) – inlet pressure [bar]

	p_out (numerical) – outlet pressure [bar]

	temp_in (numerical) – inlet temperature of the hydrogen [K]

	temp_out (numerical) – outlet temperature of the hydrogen [K]

Electric Heater

A simple electric heater component that converts electricity to heat is created through this module.

Scope

Electric heaters can convert electricity into heat directly with a high efficiency, which can
be useful in energy systems with large quantitites of renewable electricity production as
well as a heat demand that must be satisfied.

Concept

A simple oemof Transformer component is used to convert the electricity bus into
a thermal bus, with a constant efficiency of 98% applied [1].

[image: electrical_heater.png]

Fig.1: Simple diagram of an electric heater.

References

[1] Meyers, S. et.al. (2016). Competitive Assessment between Solar Thermal and
Photovoltaics for Industrial Process Heat Generation, International Solar
Energy Society.

	
class smooth.components.component_electric_heater.ElectricHeater(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the electric heater component

	bus_el (str) – electricity bus that is the input of the electric heater

	bus_th (str) – thermal bus that is the output of the electric heater

	power_max (numerical) – maximum thermal output [W]

	life_time (numerical) – life time of the component [a]

	efficiency (float (0-1)) – constant efficiency of the heater [-]

	set_parameters(params) (function) – updates parameter default values (see generic Component class)

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from the information given in the
ElectricHeater class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

Electrolyzer (alkaline)

This module represents an alkaline electrolyzer that exhibits non-linear behaviour.

Scope

The conversion of electricity into hydrogen can be done through the process of
electrolysis. There is a widespread use of alkaline water electrolyzers in
dynamic energy systems (involving hydrogen production) due to their simplicity,
and providing the electrolyzer with electricity from renewable sources can
result in sustainable hydrogen production.

Concept

The alkaline electrolyser intakes an electricity flow and outputs a hydrogen flow.
The behaviour of the alkaline electrolyzer is non-linear, which is
demonstrated through the use of oemof’s Piecewise Linear Transformer component.

[image: electrolyzer_alkaline.png]

Fig.1: Simple diagram of an alkaline electrolyzer.

Maximum power

In order to make it possible to define the maximum power of the electrolyser,
the number of cells required in the electrolyser is adjusted accordingly.
This is achieved by checking how many cells lead to the maximum power at
maximum temperature.

Maximum hydrogen production

The maximum amount of hydrogen that can be produced in one time step is
determined by the following equation:

\[H_{2,max} = \frac{J_{max} \cdot A_{cell} \cdot t \cdot 60
 \cdot z_{cell}}{(2 \cdot F) \cdot \frac{M_{H_{2}}}{1000}}\]

	\(H_{2,max}\) = maximum hydrogen produced in one time step [kg]

	\(J_{max}\) = maximum current density [A/cm^2]

	\(A_{cell}\) = size of cell surface [cm²]

	\(t\) = interval time

	\(z_{cell}\) = number of cells per stack

	\(F\) = faraday constant F [As/mol]

	\(M_{H_{2}}\) = molar mass M_H2 [g/mol]

Hydrogen production

Initially, the breakpoints are set up for the electrolyzer conversion of electricity to
hydrogen. The breakpoint values for the electric energy are taken in ten evenly spaced
incremental steps from 0 to the maximum energy, and the hydrogen production and
resulting electrolyzer temperature at each breakpoint is eventually determined.

First, the current density at each breakpoint is calculated (see get_electricity_by_power
function). Using this value, the hydrogen mass produced is calculated:

\[H_{2} = \frac{I \cdot A_{cell} \cdot t \cdot 60 \cdot
z_{cell}}{(2 \cdot F) \cdot \frac{M_{H_{2}}}{1000}}\]

	\(H_2\) = hydrogen produced in one time step [kg]

	\(I\) = current [A]

Varying temperature

The new temperature of the electrolyzer is calculated using Newton’s law of cooling.
The temperature to which the electrolyzer will heat up to depends on the given
current density. Here, linear interpolation is used:

\[\begin{align}\begin{aligned}T_{aim} = T_{min} + (T_{max} - T_{min}) \cdot \frac{J}{J_{T_{max}}} \\T_{new} = T_{aim} + (T_{old} - T_{aim}) \cdot e^{-t \frac{60}{2310}}\end{aligned}\end{align} \]

	\(T_{aim}\) = temperature to which the electrolyser is heating up,
depending on current density [K]

	\(T_{min}\) = minimum temperature of electrolyzer [K]

	\(T_{max}\) = maximum temperature of electrolyzer [K]

	\(J\) = current density [A/cm²]

	\(J_{T_{max}}\) = current density at maximum temperature [A/cm²]

	\(T_{new}\) = new temperature of electrolyzer [K]

	\(T_{new}\) = new temperature of electrolyzer [K]

	\(T_{old}\) = old temperature of electrolyzer [K]

	\(t\) = interval time [min]

Additional calculations

For more in depth information on how parameters such as the current density or reversible
voltage are calculated, see inside the component for the necessary functions.

	
class smooth.components.component_electrolyzer.Electrolyzer(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the electrolyser component

	bus_el (str) – electricity bus that is the input of the electrolyser

	bus_h2 (str) – hydrogen bus that is the output of the electrolyser

	power_max (numerical) – maximum power of the electrolyser [W]

	pressure (numerical) – pressure of hydrogen in the system [Pa]

	fs_pressure (numerical) – pressure of hydrogen in the system, to be used
in other components [bar]

	temp_init (numerical) – initial electrolyser temperature [K]

	life_time (numerical) – life time of the component [a]

	fitting_value_exchange_current_density (numerical) – fitting parameter
exchange current density [A/cm²]

	fitting_value_electrolyte_thickness (numerical) – thickness of the
electrolyte layer [cm]

	temp_min (numerical) – minimum temperature of the electrolyzer
(completely cooled down) [K]

	temp_max (numerical) – highest temperature the electrolyser can be [K]

	cur_dens_max (numerical) – maximal current density given by the
manufacturer [A/cm^2]

	cur_dens_max_temp (numerical) – current density at which the maximal
temperature is reached [A/cm^2]

	area_cell (numerical) – size of the cell surface [cm²]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	interval_time (numerical) – interval time [min]

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from the information given in the
Electrolyzer class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
conversion_fun_ely(ely_energy)

	Gives out the hydrogen mass values for the electric energy values at the
breakpoints

	Parameters

	ely_energy (numerical) – electric energy values at the breakpoints

	Returns

	The according hydrogen production value [kg]

	
ely_voltage_u_act(cur_dens, temp)

	Describes the activity losses within the electolyzer

	Parameters

	
	cur_dens (numerical) – current density [A/cm²]

	temp (numerical) – temperature [K]

	Returns

	activation voltage for this node [V]

	
ely_voltage_u_ohm(cur_dens, temp)

	Takes into account two ohmic losses, one being the
resistance of the electrolyte itself (resistanceElectrolyte) and
other losses like the presence of bubbles (resistanceOther)

	Parameters

	
	cur_dens (numerical) – current density [A/cm²]

	temp (numerical) – temperature [K]

	Returns

	cell voltage loss due to ohmic resistance [V]

	
ely_voltage_u_rev(temp)

	Calculates the reversible voltage taking two parts into consideration:
the first part takes into account changes of the reversible cell voltage
due to temperature changes, the second part due to pressure changes

	Parameters

	temp – temperature [K]

	Returns

	reversible voltage [V]

	
get_cell_temp(cur_dens)

	Calculates the electrolyzer temperautre for the following time step

	Parameters

	cur_dens (numerical) – given current density [A/cm²]

	Returns

	new electrolyzer temperature [K]

	
get_electricity_by_power(power, this_temp=None)

	Calculates the current density for a given power

	Parameters

	
	power (numerical) – current power the electrolyzer is operated with [kW]

	this_temp (numerical) – temperature of the electrolyzer [K]

	Returns

	current density [A/cm²]

	
get_mass_and_temp(energy_used)

	Calculates the mass of hydrogen produced along with the resulting temperature
of the electrolyzer for a certain energy

	Parameters

	energy_used (numerical) – energy value for the next time step [kWh]

	Returns

	produced hydrogen [kg] and the resulting electrolyzer temperature [K]

	
get_mass_produced_by_current_state(cur_dens)

	Calculates the hydrogen mass produced by a given current density

	Parameters

	cur_dens (numerical) – given current density [A/cm²]

	Returns

	hydrogen mass produced [kg]

	
update_nonlinear_behaviour()

	Updates the nonlinear behaviour of the electrolyser in terms of hydrogen production,
as well as the resulting temperature of the electrolyser

	
update_states(results)

	Updates the states of the electrolyser component for each time step

	Parameters

	results (object) – oemof results for the given time step

	Returns

	updated state values for each state in the ‘state’ dict

Electrolyzer Waste Heat (alkaline)

This module is created as a subclass of the alkaline Electrolyzer module with
the inclusion of a waste heat model.

Scope

The significance of including the heat generation from an electrolyzer in an
energy system is that this heat can be utilized for other means (e.g.
contributing towards a heat demand) as opposed to wasted. This will be
particularly important with the implementation of large scale electrolyzers,
where there is the potential to recover large quantities of energy.

Concept

In this component, it is assumed that the alkaline electrolyzer consists of a
cylindrical cell stack along with two cylindrical gas separators. It is further
assumed that:

	The cell stack height consists of the cells plus two ends. The height of the
end of the stack which is not part of the cells has a dependence on the diameter
of the cell. The ratio is taken as 7:120 [1]

	The height of an individual cell is in a ratio of 1:75.5 with the cell
diameter [2]

	The overall surface area exposed by the gas separators and the pipe
communicating them is in a ratio of 1:0.42 with the surface area of the stack [3]

[image: electrolyzer_alkaline_waste_heat.png]

Fig.1: Simple diagram of an alkaline electrolyzer with waste heat.

The alkaline electrolyzer with waste heat intakes an electrical flow and outputs
hydrogen and thermal energy flows. The behaviour of the electrolyzer waste heat
model is non-linear, which is demonstrated through the use of oemof’s Piecewise
Linear Transformer component.

Waste heat

The waste heat equation is derived from the heat balance equation, found in [3].
From this equation, it is shown that the change of the electrolyzer temperature
comes from the electrical power input dissipated as heat, without the inclusion
of the heat losses to the environment, the heat removed by the cooling water,
and the sum of the enthalpy leaving the system with the hydrogen and oxygen
streams and the enthalpy gained from the deionized water to warm up the
electrolyzer from ambient to operating temperature [3]:

\[C_t \cdot \frac{dT}{dt} = P_{heat} - Q_{loss} - Q_{cooling} - h_j \cdot m_j\]

#ToDo: sort out this equation including derivatives etc.

For the waste heat model in SMOOTH, the heat balance is assumed for
stationary conditions. This is because the model only applies when the
maximum temperature is reached, and this temperature is then kept constant
because of the removal of the waste heat from the system.

The waste heat, which is removed from the electrolyzer by the cooling water,
is calculated using the following equation, based on [3]:

\[Q_W = Q_{gen} - Q_L + L + S\]

	\(Q_{W}\) = waste heat

	\(Q_{gen}\) = internal heat generation

	\(Q_{L}\) = heat losses to the environment

	\(L\) = latent heat

	\(S\) = sensible heat

Internal heat generation

The internal heat generation within an electrolyzer is as a result of a greater
energy supply to the electrolyzer than is required . This is
necessary for reaching high water electrolysis rates [3]. The internal heat
gemeration is calculated as follows:

\[Q_{gen} = E_{sup} - H_{2,prod} \cdot HHV_{H_{2}} \cdot \frac{1e6}{3600}\]

	\(E_{sup}\) = total energy supply to the electrolyzer

	\(H_{2,prod}\) = the amount of hydrogen produced

	\(HHV_{H_{2}}\) = the higher heating value of hydrogen

Heat losses

In order to calculate the heat losses to the environment, the heat transfer
coefficient is first calculated based on [3]. It should be noted that the
following equation is specifically to determine the heat transfer coefficient
for horizontal cylinders, and since the parts of the alkaline have a cylindrical
shape, this equation is used for the alkaline electrolyzer component:

\[h = 1.32 \cdot \frac{\Delta T}{d}^{0.25}\]

The heat losses are then calculated taking into consideration the heat
transfer coefficient, the total surface area of the main parts of the
electrolyzer (the cell stack and the gas separators) and the temperature
difference between the surface of the electrolyzer and the ambient temperature [3].
The equation is as follows:

\[Q_L = A_{sep} \cdot h \cdot (T_{sep} - T_{amb}) + A_{stack} \cdot h
\cdot (T_{stack} - T_{amb})\]

	\(A_{sep}\) = total surface area of the gas separators

	\(T_{sep}\) = separator surface temperature

	\(T_{amb}\) = ambient temperature

	\(A_{stack}\) = total surface area of the cell stack

	\(T_{stack}\) = cell stack surface temperature

Sensible and latent heat

Sensible heat

The sensible heat removed from the system within the \(H_2\) and \(O_2\) streams,
as well as the sensible heat required to warm the deionized water from ambient
temperature to the stack operating temperature, must be considered when determining
the total waste heat. From the known mass of produced hydrogen along with the
molar masses of \(H_2\) and \(O_2\), the mass of produced oxygen is
determined:

\[m_{O_{2}} = m_{H_{2}} \cdot 0.5 \cdot \frac{M_{O_{2}}}{M_{H_{2}}}\]

	\(m_{O_{2}}\) = mass of oxygen stream

	\(m_{H_{2}}\) = mass of hydrogen stream

	\(M_{O_{2}}\) = molar mass of oxygen

	\(M_{H_{2}}\) = molar mass of hydrogen

The mass of \(H_2O\) is then determined as follows:

\[m_{H_{2O}} = m_{H_{2}} + m_{O_{2}}\]

	\(m_{H_{2O}}\) = mass of water

Thus, the sensible heat is calculated using mass and specific heat:

\[S = \frac{m_{H_{2}O} \cdot c_{p,H_{2}O} \cdot -\Delta T - m_{H_{2}} \cdot
 c_{p,H_{2}} \cdot \Delta T + m_{O_{2}} \cdot c_{p,O_{2}} \cdot \Delta T}{3.6e6}\]

	\(c_{p,H_{2}O}\) = specific heat of water

	\(\Delta T\) = the temperature change between the ambient and electrolyzer temperature

	\(c_{p,H_{2}}\) = specific heat of hydrogen

	\(c_{p,O_{2}}\) = specific heat of oxygen

Latent heat

The latent heat is neglected since the mass of \(H_{2O}\) vapor
(leaving the system with the oxygen and hydrogen streams) is neglected.

Piecewise Linear Transformer

Currently, the piecewise linear transformer component in oemof can only
represent a one-to-one transformation with a singular input and a singular
output. Thus, in order to represent the non-linear behaviour of the alkaline
electrolyser in the energy system, two oemof components are created for the
hydrogen and thermal outputs individually, with a constraint that the electric
input flows into each component must always be equal. In this way, the individual
oemof components behave as one component.

References

[1] De Silva, Y.S.K. (2017). Design of an Alkaline Electrolysis Stack, University of Agder.
[2] Vogt, U.F. et al. (2014). Novel Developments in Alkaline Water Electrolysis, Empa
Laboratory of Hydrogen and Energy.
[3] Dieguez, P.M. et al. (2008). Thermal Performance of a commercial alkaline water
electrolyser: Experimental study and mathematical modeling, Int. J. Hydrogen Energy.

	
class smooth.components.component_electrolyzer_waste_heat.ElectrolyzerWasteHeat(params)

	Bases: smooth.components.component_electrolyzer.Electrolyzer

	Parameters

	
	param_bus_th (dict) – inclusion of the thermal bus in the parameters dictionary,
which was not included in the electrolyzer mother class

	bus_th (str) – thermal bus that is the output of the electrolyzer

	set_parameters(params) (function) – updates parameter default values (see generic Component class)

	interval_time (numerical) – interval time [min]

	energy_max (numerical) – maximum energy that the electrolyzer can use in one time step [Wh]

	c_p_H2 (numerical) – specific heat of hydrogen at constant pressure [J/(kg*K)]

	c_p_O2 (numerical) – specific heat of oxygen at constant pressure [J/(kg*K)]

	c_p_H2O (numerical) – specific heat of water at constant pressure [J/(kg*K)]

	diameter_cell (numerical) – diameter of the electrolyzer cell [m]

	stack_end_height (numerical) – height of the two stack ends that are not part of the cells,
from the perspective of the total stack height [m]

	height_cell (numerical) – height of an individual cell in relation to the cell diameter [m]

	height_stack (numerical) – total stack height, which is calculated by taking the cell stack
plus the two additional ends of the stack into consideration [m]

	area_stack (numerical) – external surface area of the electrolyser stack under the
assumption that it is cylindrical [m^2]

	area_separator (numerical) – overall surface area exposed by the gas separators and the
pipe communicating them [m^2]

	model_h2 (oemof model) – model created with regards to the hydrogen produced by the
electrolyser

	model_th (oemof model) – model created with regards to the thermal energy produced by
the electrolyser

	
add_to_oemof_model(busses, model)

	Creates two separate oemof Piecewise Linear Transformer components for the hydrogen
and thermal production of the electrolyser from information given in the
ElectrolyserWasteHeat class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (model) – oemof model containing the hydrogen production and thermal energy
production of the electrolyser

	Returns

	the oemof electrolyzer and electrolyzer thermal components

	
conversion_fun_ely(ely_energy)

	Gives out the hydrogen mass values for the electric energy values at the
breakpoints

	Parameters

	ely_energy (numerical) – electric energy values at the breakpoints

	Returns

	The according hydrogen production value [kg]

	
conversion_fun_thermal(ely_energy)

	Gives out the thermal energy values for the electric energy values at the
breakpoints

	Parameters

	ely_energy (numerical) – The electric energy values at the breakpoints

	Returns

	The according thermal energy production value [Wh]

	
get_waste_heat(energy_used, h2_produced, new_ely_temp)

	Approximates waste heat production based on calculations of internal heat
generation, heat losses to the environment and the sensible and latent
heat removed from the system

	Parameters

	
	energy_used (numerical) – energy consumed by the electrolyser [kWh]

	h2_produced (numerical) – hydrogen produced by the electrolyser [kg]

	new_ely_temp (numerical) – resulting temperature of the electrolyser [K]

	Returns

	resulting waste heat produced by the electrolyser [kWh]

	
sensible_and_latent_heats(mass_H2, new_ely_temp)

	Calculates the sensible and latent heat that has been removed with the
hydrogen and oxygen streams leaving the system.

	Parameters

	
	mass_H2 (numerical) – mass of hydrogen [kg]

	new_ely_temp (numerical) – resulting temperature of the electrolyser [K]

	Returns

	values for the sensible and latent heat

	
update_constraints(busses, model_to_solve)

	Set a constraint so that the electric inflow of the hydrogen producing and the
thermal part are always the same (which is necessary while the piecewise linear
transformer cannot have two outputs yet and therefore the two parts need to be
separate components).

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model_to_solve (model) – oemof model that will be solved

	
update_flows(results)

	Updates the flows of the electrolyser waste heat components for each time
step.

	Parameters

	results (object) – oemof results for the given time step

	Returns

	updated flow values for each flow in the ‘flows’ dict

	
update_nonlinear_behaviour()

	Updates the nonlinear behaviour of the electrolyser in terms of hydrogen and
thermal energy (waste heat) production, as well as the resulting temperature of
the electrolyser

Energy Demand from CSV

This module represents generic energy demands, which are created through this
class by the importation of CSV files.

Scope

The final energy demand component must be satisified by the energy system in
the simulations/optimizations.

Concept

The generic energy demand component has one input (the bus is specified by the
user), and it requires a demand time series in the form of a CSV file. Optionally,
this time series can be created by oemof’s demandlib package [1]. This module
uses oemof’s Sink component.

References

[1] oemof Team (2016). demandlib documentation, https://demandlib.readthedocs.io/en/latest/.

	
class smooth.components.component_energy_demand_from_csv.EnergyDemandFromCsv(params)

	Bases: smooth.components.component.Component

Energy demand components are created through this class by importing csv files.

	Parameters

	
	name (str) – unique name given to the energy demand component

	nominal_value (numerical) – value that the timeseries should be multipled by, default is 1

	csv_filename – csv filename containing the desired demand timeseries
e.g. ‘my_demand_filename.csv’

	csv_separator (str) – separator of the csv file e.g. ‘,’ or ‘;’, default is ‘,’

	column_title (str or int) – column title (or index) of the timeseries, default is 0

	path (str) – path where the timeseries csv file can be located

	bus_in (str) – virtual bus that enters the energy demand component (e.g. the hydrogen bus)

	set_parameters(params) (function) – updates parameter default values (see generic Component class)

	data (pandas dataframe) – dataframe containing data from timeseries

	
add_to_oemof_model(busses, model)

	Creates an oemof Sink component from the information given in the
EnergyDemandFromCSV class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

Energy Source from CSV

General energy source components are created through this class by importing csv files.

Scope

The energy source components usually represent the various means
of renewable energy production in the energy system, which should be
efficiently utilised (and sometimes scaled) to avoid excessive
energy losses.

Concept

The energy source component is suitable for any energy type once the output bus
has been defined as well as a time series in the form of a CSV file, which
can be created through oemof’s windpowerlib or pvlib, for example [1][2].

References

[1] oemof Team (2016). windpowerlib documentation, https://windpowerlib.readthedocs.io/en/stable/.
[2] pvlib Team (2020). pvlib documentation, https://pvlib-python.readthedocs.io/en/v0.7.2/.

	
class smooth.components.component_energy_source_from_csv.EnergySourceFromCsv(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the energy source component

	nominal_value (numerical) – value that the timeseries should be multiplied by, default is 1

	csv_filename (str) – csv filename containing the desired timeseries, e.g. ‘my_filename.csv’

	csv_separator (str) – separator of the csv file, e.g. ‘,’ or ‘;’ (default is ‘,’)

	column_title (str or int) – column title (or index) of the timeseries, default is 0

	path (str) – path where the timeseries csv file can be located

	bus_out (str) – virtual bus that leaves the energy source component (e.g. the electricity bus)

	set_parameters(params) (function) – updates parameter default values (see generic Component class)

	data (pandas dataframe) – dataframe containing data from timeseries

	
add_to_oemof_model(busses, model)

	Creates an oemof Source component from the information given in the
EnergySourceFromCSV class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

Fuel cell CHP

This module represents a combined heat and power (CHP) system with a fuel cell,
using hydrogen to generate electricity and heat.

Scope

The importance of a fuel cell CHP component in dynamic energy systems is its
potential to enable better sector coupling between the electricity and
heating sectors, thus less dependence on centralised power systems by
offering the ability for localised energy supply [1].

Concept

The fuel cell CHP has a hydrogen bus input along with an electrical bus and
thermal bus output. The behaviour of the fuel cell CHP component is non-linear,
which is demonstrated through the use of oemof’s Piecewise Linear Transformer
component.

[image: fuel_cell_chp.png]

Fig.1: Simple diagram of a fuel cell CHP.

Efficiency

The efficiency curves for both electrical and thermal energy output according
to nominal load which are considered for the fuel cell CHP component are
displayed in Figure 2. From the breakpoints, the electrical and thermal
production based on the hydrogen consumption and variable efficiency can be
obtained. The piecewise linear representation that is actually used in the
SMOOTH component is shown in the left image, and the approximated efficiency
curve is shown in the right image.

[image: fuel_cell_chp_efficiency.png]

Fig.2: Piecewise and approximated efficiency of a fuel cell CHP.

Electrical and thermal energy production

In order to calculate the electrical and thermal energy production for
each load point, first the maximum hydrogen input is calculated:

\[H_{2,max} = \frac{P_{max}}{LHV_{H_2}} \cdot \mu_{elec_{full load}}\]

	\(H_{2,max}\) = maximum hydrogen input per timestep [kg]

	\(P_{max}\) = maximum electrical output power [W]

	\(\mu_{elec_{max}}\) = electrical efficiency at full load [-]

Then the load break points for both the electrical and thermal components
are converted into how much hydrogen is consumed at each load break point
according to the maximum hydrogen input per time step:

\[\begin{align}\begin{aligned}bp_{H_{2},el,i} = bp_{load,el,i} \cdot H_{2,max} \\bp_{H_{2},th,i} = bp_{load,th,i} \cdot H_{2,max}\end{aligned}\end{align} \]

	\(bp_{H_{2},el,i}\) = ith electrical break point in terms of hydrogen consumption [kg]

	\(bp_{load,el,i}\) = ith electrical break point in terms of nominal load [-]

	\(bp_{H_{2},th,i}\) = ith thermal break point in terms of hydrogen consumption [kg]

	\(bp_{load,th,i}\) = ith thermal break point in terms of nominal load [-]

From these hydrogen consumption values, the absolute electrical and thermal
energy produced at each break point is calculated:

\[\begin{align}\begin{aligned}E_{el,i} = bp_{H_{2},el,i} \cdot \mu_{el,i} \cdot LHV_{H_{2}} \cdot 1000 \\E_{th,i} = bp_{H_{2},th,i} \cdot \mu_{th,i} \cdot LHV_{H_{2}} \cdot 1000\end{aligned}\end{align} \]

	\(E_{el,i}\) = ith absolute electrical energy value [Wh]

	\(\mu_{el,i}\) = ith electrical efficiency [-]

	\(E_{th,i}\) = ith absolute thermal energy value [Wh]

	\(\mu_{th,i}\) = ith thermal efficiency [-]

Piecewise Linear Transformer

Currently, the piecewise linear transformer component in oemof can only
represent a one-to-one transformation with a singular input and a singular
output. Thus, in order to represent the non-linear fuel cell CHP in the
energy system, two oemof components are created for the electrical and
thermal outputs individually, with a constraint that the hydrogen input flows
into each component must always be equal. In this way, the individual oemof
components behave as one component.

References

[1] P.E. Dodds et.al. (2015). Hydrogen and fuel cell technologies for heat: A
review, International journal of hydrogen energy.

	
class smooth.components.component_fuel_cell_chp.FuelCellChp(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the fuel cell CHP component

	bus_h2 (str) – hydrogen bus that is the input of the CHP

	bus_el (str) – electricity bus that is the output of the CHP

	bus_th (str) – thermal bus that is the output of the CHP

	power_max (numerical) – maximum electrical output power [W]

	life_time (numerical) – lifetime of the component [a]

	set_parameters(params) (function) – updates parameter default values (see generic Component class)

	heating_value_h2 (numerical) – heating value of hydrogen [kWh/kg]

	bp_load_el (list) – electrical efficiency load break points [-]

	bp_eff_el (list) – electrical efficiency break points [-]

	bp_load_th (list) – thermal efficiency load break points [-]

	bp_eff_th (list) – thermal efficiency break points [-]

	h2_input_max (numerical) – maximum hydrogen input that leads to maximum electrical energy in Wh [kg]

	bp_h2_consumed_el (list) – converted electric load points according to maximum hydrogen
input per time step [kg]

	bp_h2_consumed_th (list) – converted thermal load points according to maximum hydrogen
input per time step [kg]

	bp_energy_el (list) – absolute electrical energy values over the load points [Wh]

	bp_energy_th (list) – absolute thermal energy values over the load points [Wh]

	bp_h2_consumed_el_half (list) – half the amount of hydrogen that is consumed [kg]

	bp_h2_consumed_th_half (list) – half the amount of hydrogen that is consumed [kg]

	model_el (model) – electric model to set constraints later

	model_th (model) – thermal model to set constraints later

	
add_to_oemof_model(busses, model)

	Creates two separate oemof Piecewise Linear Transformer components for the
electrical and thermal production of the fuel cell CHP from information given
in the FuelCellCHP class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (model) – oemof model containing the electrical energy production and
thermal energy production of the fuel cell CHP

	Returns

	tuple of electric and thermal oemof components

	
get_el_energy_by_h2(h2_consumption)

	Gets the electrical energy produced by the according hydrogen consumption value.

	Parameters

	h2_consumption – hydrogen consumption value [kg]

	Returns

	according electrical energy value [Wh]

	
get_th_energy_by_h2(h2_consumption)

	Gets the thermal energy produced by the according hydrogen consumption value.

	Parameters

	h2_consumption – hydrogen consumption value [kg]

	Returns

	according thermal energy value [Wh]

	
update_constraints(busses, model_to_solve)

	Set a constraint so that the hydrogen inflow of the electrical and
the thermal part are always the same (which is necessary while the
piecewise linear transformer cannot have two outputs yet and
therefore the two parts need to be separate components).

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model_to_solve (model) – The oemof model that will be solved

	
update_flows(results)

	Updates the flows of the fuel cell CHP components for each time step.

	Parameters

	results (object) – The oemof results for the given time step

	Returns

	updated flow values for each flow in the ‘flows’ dict

Gas Engine CHP Biogas

A combined heat and power (CHP) plant with a gas engine, using biogas to
generate electricity and heat is created through this class.

Scope

Biogas CHPs play a significant role in renewable energy systems by using
biogas, which has been produced from organic waste material, as a fuel source
to produce both electricity and heat. The utilisation of biogas CHPs is
beneficial for sector coupling and the minimisation of methane emissions as
a result of using up the biogas.

Concept

The biogas CHP component requires a biogas bus input in order to output an
electrical and a thermal bus, and oemof’s Piecewise Linear Transformer
component is chosen to represent the nonlinear efficiencies of the biogas
CHP. The method used in this component is similar to the fuel cell CHP
component.

[image: gas_engine_chp_biogas.png]

Fig.1: Simple diagram of a biogas gas engine CHP.

Biogas composition

The user can determine the desired composition of biogas by stating the
percentage share of methane and carbon dioxide in the gas (the default
is 50-50 % share). The lower heating value (LHV) of methane is 13.9
kWh/kg [1], and the molar masses of methane and carbon dioxide are
0.01604 kg/mol and 0.04401 kg/mol, respectively. The gas composition is
given as a mole percentage, and this percentage is transformed into a
mass percentage. Finally, the heating value of the biogas is found by
multiplying the mass percentage with the LHV of methane, which is
demonstrated below:

\[LHV_{Bg} = \frac{CH_{4_{share}} \cdot M_{CH_{4}}}{CH_{4_{share}} \cdot
M_{CH_{4}} + CO_{2_{share}} \cdot M_{CO_{2}}} \cdot LHV_{CH_{4}} \]

	\(LHV_{Bg}\) = heating value of biogas [kWh/kg]

	\(CH_{4_{share}\) = proportion of methane in biogas [-]

	\(M_{CH_{4}}\) = molar mass of methane [kg/mol]

	\(CO_{2_{share}}\) = proportion of carbon dioxide in biogas [-]

	\(M_{CO_{2}}\) = molar mass of carbon dioxide [kg/mol]

	\(LHV_{CH_{4}}\) = heating value of methane [kWh/kg]

Efficiency

The electrical and thermal production from the CHP is determined by variable
efficiencies according to nominal load, and the efficiency curves used in the
component can be seen in Figure 2. The piecewise linear representation that
is actually used in the SMOOTH component is shown in the left image, and the
approximated efficiency curve is shown in the right image.

[image: chp_biogas_efficiency.png]

Fig.2: Piecewise and approximated efficiency of biogas gas engine CHP.

Electrical and thermal energy production

The maximum biogas input is initially calculated so that the electrical
and thermal energy production for each load point can be calculated:

\[Bg_{max} = \frac{P_{max}}{LHV_{Bg}} \cdot \mu_{elec_{full load}}\]

	\(Bg_{max}\) = maximum biogas input per timestep [kg]

	\(P_{max}\) = maximum electrical output power [W]

	\(\mu_{elec_{max}}\) = electrical efficiency at full load [-]

Then the load break points for both the electrical and thermal components
are converted into how much biogas is consumed at each load break point
according to the maximum biogas input per time step:

\[\begin{align}\begin{aligned}bp_{Bg,el,i} = bp_{load,el,i} \cdot Bg_{max} \\bp_{Bg,th,i} = bp_{load,th,i} \cdot Bg_{max}\end{aligned}\end{align} \]

	\(bp_{Bg,el,i}\) = ith electrical break point in terms of biogas consumption [kg]

	\(bp_{load,el,i}\) = ith electrical break point in terms of nominal load [-]

	\(bp_{Bg,th,i}\) = ith thermal break point in terms of biogas consumption [kg]

	\(bp_{load,th,i}\) = ith thermal break point in terms of nominal load [-]

From these biogas consumption values, the absolute electrical and thermal
energy produced at each break point is calculated:

\[\begin{align}\begin{aligned}E_{el,i} = bp_{Bg,el,i} \cdot \mu_{el,i} \cdot LHV_{Bg} \cdot 1000 \\E_{th,i} = bp_{Bg,th,i} \cdot \mu_{th,i} \cdot LHV_{Bg} \cdot 1000\end{aligned}\end{align} \]

	\(E_{el,i}\) = ith absolute electrical energy value [Wh]

	\(\mu_{el,i}\) = ith electrical efficiency [-]

	\(E_{th,i}\) = ith absolute thermal energy value [Wh]

	\(\mu_{th,i}\) = ith electrical efficiency [-]

Piecewise Linear Transformer

As stated in the fuel cell CHP component, two seperate oemof components
for the electrical and thermal production of the biogas CHP must be created,
but they still behave as one component by setting a constraint that the
biogas input flows into the two components are always equal.

References

[1] Linde Gas GmbH (2013). Rechnen Sie mit Wasserstoff. Die Datentabelle.

	
class smooth.components.component_gas_engine_chp_biogas.GasEngineChpBiogas(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the biogas gas engine CHP component

	bus_bg (str) – biogas bus input of the CHP

	bus_el (str) – electrical bus input of the CHP

	bus_th (str) – thermal bus input of the CHP

	power_max (numerical) – maximum electrical output power [W]

	ch4_share (numerical) – proportion of methane in biogas [-]

	co2_share (numerical) – proportion of carbon dioxide in biogas [-]

	set_parameters(params) (function) – updates parameter default values (see generic Component class)

	heating_value_ch4 (numerical) – heating value of methane [kWh/kg]

	mol_mass_ch4 (numerical) – molar mass of methane [kg/mol]

	mol_mass_co2 (numerical) – molar mass of carbon dioxide [kg/mol]

	heating_value_bg (numerical) – heating value of biogas [kWh/kg]

	bp_load_el (list) – electrical efficiency load break points [-]

	bp_eff_el (list) – electrical efficiency break points [-]

	bp_load_th (list) – thermal efficiency load break points [-]

	bp_eff_th (list) – thermal efficiency break points [-]

	bg_input_max (numerical) – maximum biogas input that leads to the
maximum electrical energy in Wh [kg]

	bp_bg_consumed_el (list) – converted electric load points according
to maximum hydrogen input per time step [kg]

	bp_bg_consumed_th (list
:param bp_energy_el: absolute electrical energy values over the load points [Wh]) – converted thermal load points according to
maximum hydrogen input per time step [kg]

	bp_energy_th (list) – absolute thermal energy values over the load points [Wh]

	bp_bg_consumed_el_half (list) – half the amount of biogas that is consumed [kg]

	bp_bg_consumed_th_half (list) – half the amount of biogas that is consumed [kg]

	model_el (model) – electric model to set constraints later

	model_th (model) – thermal model to set constraints later

	
add_to_oemof_model(busses, model)

	Creates two separate oemof Piecewise Linear Transformer components for the
electrical and thermal production of the biogas CHP from information given
in the GasEngineChpBiogas class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (model) – oemof model containing the electrical energy production and
thermal energy production of the biogas CHP

	Returns

	tuple of electric and biogas oemof components

	
get_electrical_energy_by_bg(bg_consumption)

	Gets the electrical energy produced by the according biogas production value.

	Parameters

	bg_consumption – biogas production value [kg]

	Returns

	according electrical energy value [Wh]

	
get_thermal_energy_by_bg(bg_consumption)

	Gets the thermal energy produced by the according biogas production value.

	Parameters

	bg_consumption – biogas production value [kg]

	Returns

	according thermal energy value [Wh]

	
update_constraints(busses, model_to_solve)

	Set a constraint so that the biogas inflow of the electrical and
the thermal part are always the same (which is necessary while the
piecewise linear transformer cannot have two outputs yet and
therefore the two parts need to be separate components).

	Parameters

	
	busses –

	model_to_solve (model) – The oemof model that will be solved

	
update_flows(results)

	Updates the flows of the biogas CHP components for each time step.

	Parameters

	results (object) – The oemof results for the given time step

	Returns

	updated flow values for each flow in the ‘flows’ dict

Gate

A gate component is created to transform a specific bus into a more
general bus.

Scope

The gate component is a virtual component, so would not be found in a real life
energy system, but is used in the framework as a means of transforming a
specific bus into a more general bus. As an example, it could be useful in an
energy system to initially differentiate between the electricity buses coming
out of each renewable energy source, but at some point in the system it could
become more useful to have only one generic electricity bus defined.

Concept

An oemof Transformer component is used to convert the chosen input bus into the
chosen output bus, with a limitation on the value that can be transformed
per timestep by the defined maximum input parameter. Applying an efficiency
to the conversion of the input bus to the output bus is optional, with the
default value set to 100%.

	
class smooth.components.component_gate.Gate(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the gate component

	max_input (numerical) – maximum value that the gate can intake per timestep

	bus_in (str) – bus that enters the gate component

	bus_out (str) – bus that leaves the gate component

	efficiency (numerical) – efficiency of the gate component

	set_parameters(params) (function) – updates parameter default values (see generic Component class)

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from information given in
the Gate class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

H2 Refuel Cooling System

A component that represents the cooling system in a refuelling station is
created through this class.

Scope

As part of the hydrogen refuelling station, a cooling system is required
to precool high pressure hydrogen before it is dispensed into the vehicle’s
tank. This is in order to prevent the tank from overheating.

Concept

An oemof Sink component is used which has one electrical bus input that
represents the electricity required to power the cooling system.

[image: h2_refuel_cooling_system.png]

Fig.1: Simple diagram of a hydrogen refuel cooling system.

The required electricity supply for the cooling system per timestep is
calculated by the following equation:

\[E_{elec,i} = \frac{D_{H_{2},i} \cdot E_{spec} + E_{standby}}{3.6}\]

	\(E_{elec,i}\) = electrical energy required for the ith timestep [Wh]

	\(D_{H_{2},i}\) = hydrogen demand for the ith timestep [kg]

	\(E_{spec}\) = specific energy required relative to the demand [kJ/kg]

	\(E_{standby}\) = standby energy required per timestep [kJ/h]

The default specific energy is chosen to be 730 kJ/kg, and the standby
energy is chosen to be 8100 kJ/h [find source]. Furthermore, this
cooling system component is only necessary if the hydrogen is compressed
over 350 bar e.g. to 700 bar for passenger cars.

	
class smooth.components.component_h2_refuel_cooling_system.H2RefuelCoolingSystem(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the H2 refuel cooling system component

	bus_el (str) – electricity bus that is the input of the cooling system

	nominal_value (numerical) – value that the timeseries should be multiplied by, default is 1

	csv_filename (str) – csv filename containing the desired timeseries, e.g. ‘my_filename.csv’

	csv_separator (str) – separator of the csv file, e.g. ‘,’ or ‘;’ (default is ‘,’)

	column_title (str or int) – column title (or index) of the timeseries, default is 0

	path (str) – path where the timeseries csv file can be located

	cool_spec_energy (numerical) – energy required to cool the refuelling station [kJ/kg]

	standby_energy (numerical) – required standby energy [kJ/h]

	life_time (numerical) – life time of the component [a]

	number_of_units – number of units installed

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	data (pandas dataframe) – dataframe containing data from timeseries

	electrical_energy (numerical) – electrical energy required for each hour [Wh]

	
add_to_oemof_model(busses, model)

	Creates an oemof Sink component from information given in
the H2RefuelCoolingSystem class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

H2 CHP

This module represents another combined heat and power (CHP) system
that uses hydrogen to generate electricity and heat. This module
is comparable to the Fuel Cell CHP module, but using different
efficiencies that are based on real life data.

Scope

The importance of a hydrogen CHP component in dynamic energy systems is its
potential to enable better sector coupling between the electricity and
heating sectors, thus less dependence on centralised power systems by
offering the ability for localised energy supply [1].

Concept

The H2 CHP component has a hydrogen bus input and electrical and thermal
bus outputs. Similarly to the fuel cell CHP component, the behaviour of
the H2 CHP is non-linear and represented by oemof’s Piecewise Linear
Transformer component.

[image: fuel_cell_chp.png]

Fig.1: Simple diagram of an H2 CHP.

Efficiency

The efficiency of the CHP is assumed to be constant

For more detailed information, visit Fuel cell CHP

	
class smooth.components.component_h2_chp.H2Chp(params)

	Bases: smooth.components.component.Component

:param

	
add_to_oemof_model(busses, model)

	Creates a non-linear oemof Transformer component to be used in the oemof model

The CHP has to be modelled as two components
because the piecewise linear transformer does not accept 2 outputs yet.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	tuple of electric and thermal oemof components

	
get_electrical_energy_by_h2(h2_consumption)

	

	
get_thermal_energy_by_h2(h2_consumption)

	

	
update_constraints(busses, model_to_solve)

	Sometimes special constraints are required for the specific components,
which can be written here. Else, this function is used as placeholder for
components without constraints.

	Parameters

	
	busses (dict) – Dict of the virtual buses used in the energy system

	model_to_solve – ToDo: look this up in oemof

	Returns

	If used as a placeholder, nothing will be returned. Else, refer
to specific component that uses the update_constraints function for
further detail.

	
update_flows(results)

	Updates the flows of a component for each time step.

	Parameters

	
	results (object) – The oemof results for the given time step

	comp_name (str, optional) – The name of the component - while components can generate more
than one oemof model, they sometimes need to give a custom name, defaults to None

	Returns

	updated flow values for each flow in the ‘flows’ dict

PEM Electrolyzer

Polymer electrolyte membrane (PEM) electrolyzer agents are
created through this class.

Scope

Despite being less mature in the development phase than alkaline electrolysis,
thus having higher manufacturing costs, PEM electrolysis has advantages such
as quick start-up times, simple maintenance and composition, as well as no
dangers of corrosion [1]. If the manufacturing costs of PEM electrolyzers can
be reduced by economy of scale, these electrolyzers have the potential to
be crucial components in a self-sufficient renewable energy system.

Concept

The PEM electrolyzer is modelled using oemof’s Piecewise Linear Transformer
components, and the component as a whole represents the intake of
electricity to produce hydrogen and waste heat as a by-product.

[image: pem_electrolyzer.png]

Fig.1: Simple diagram of a PEM electrolyzer.

Efficiency

The amount of hydrogen and waste heat production is dependant on variable
efficiencies according to nominal load, as displayed in Figure 2. The
piecewise linear representation that is actually used in the SMOOTH component
is shown in the left image, and the approximated efficiency curve is
shown in the right image.

[image: pem_electrolyzer_efficiency.png]

Fig.2: Piecewise and approximated efficiency of PEM electrolyzer.

Hydrogen and waste heat production

The maximum power of the electrolyzer, as defined by the user, is used
to determine how much electricity is consumed at each load break point.

\[\begin{align}\begin{aligned}bp_{el,H_{2},i} = bp_{load,H_{2},i} \cdot P_{max} \\bp_{el,th,i} = bp_{load,th,i} \cdot P_{max}\end{aligned}\end{align} \]

	\(bp_{el,H_{2},i}\) = ith hydrogen break point in terms of electricity consumption [Wh]

	\(bp_{load,H_{2},i}\) = ith hydrogen break point in terms of nominal load [-]

	\(bp_{el,th,i}\) = ith thermal break point in terms of electricity consumption [Wh]

	\(bp_{load,th,i}\) = ith thermal break point in terms of nominal load [-]

From these electricity consumption values, the absolute hydrogen and waste heat
energy produced at each break point is calculated:

\[\begin{align}\begin{aligned}H_{2_{prod,i}} = \frac{bp_{el,H_{2},i} \cdot \mu_{H_{2},i}}{LHV_{H_{2}} \cdot 1000} \\E_{th,i} = bp_{el,th,i} \cdot \mu_{th,i}\end{aligned}\end{align} \]

	\(H_{2_{prod,i}}\) = ith absolute hydrogen production value [kg]

	\(\mu_{H_{2},i}}\) = ith hydrogen production efficiency [-]

	\(E_{th,i}\) = ith absolute thermal energy value [Wh]

	\(\mu_{th,i}\) = ith thermal efficiency [-]

Piecewise Linear Transformer

The PEM electrolyzer component uses oemof’s Piecewise Linear Tansformer
component in a similar fashion to the fuel cell CHP and the biogas CHP.
For more detail on the usage, visit the Fuel Cell CHP or Gas Engine
CHP Biogas components.

References

[1] Guo, Y. et.al. (2019). Comparison between hydrogen production by alkaline
water electrolysis and hydrogen production by PEM electrolysis. IOP Conference
Series: Earth and Environmental Science.

	
class smooth.components.component_pem_electrolyzer.PemElectrolyzer(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to PEM electrolyzer component

	bus_el (str) – electricity bus input of the PEM electrolyzer

	bus_h2 (str) – hydrogen bus output of the PEM electrolyzer

	bus_th (str) – thermal bus output of the PEM electrolyzer

	power_max (numerical) – maximum electrical input power [W]

	life_time (str) – life time of the component [a]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	heating_value (numerical) – heating value of hydrogen [kWh/kg]

	bp_load_h2_prod (list) – hydrogen production efficiency load break points [-]

	bp_eff_h2_prod (list) – hydrogen production efficiency break points [-]

	bp_load_waste_heat (list) – waste heat efficiency load break points [-]

	bp_eff_waste_heat (list) – waste heat efficiency break points [-]

	bp_elec_consumed_h2_prod (list) – converted hydrogen production load points
according to maximum power per timestep [Wh]

	bp_elec_consumed_waste_heat (list) – converted waste heat load points
according to maximum power per timestep [Wh]

	bp_h2_production (list) – absolute hydrogen production values over the load points [kg]

	bp_waste_heat_energy – absolute waste heat energy values over the load points [Wh]

	bp_elec_consumed_h2_prod_half (list) – half the amount of electricity that is
consumed [Wh]

	bp_elec_consumed_waste_heat_half – half the amount of electricity that is
consumed [Wh]

	model_h2 (model) – hydrogen production model to set constraints later

	model_th (model) – waste heat model to set constraints later

	
add_to_oemof_model(busses, model)

	Creates two separate oemof Piecewise Linear Transformer components for the
hydrogen and waste heat production of the PEM electrolyzer from information
given in the PEMElectrolyzer class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (model) – oemof model containing the hydrogen production and
waste heat production of the PEM electrolyzer

	Returns

	tuple of H2 and waste heat oemof components

	
get_h2_production_by_electricity(electricity_consumption)

	Gets the hydrogen produced by the according electricity consumption
value.

	Parameters

	electricity_consumption – electrcity consumption value [Wh]

	Returns

	according hydrogen production value [kg]

	
get_waste_heat_energy_by_electricity(electricity_consumption)

	Gets the waste heat produced by the according electricity consumption
value.

	Parameters

	electricity_consumption – electrcity consumption value [Wh]

	Returns

	according waste heat value [Wh]

	
update_constraints(busses, model_to_solve)

	Set a constraint so that the electricity inflow of the hydrogen and
the waste heat part are always the same (which is necessary while the
piecewise linear transformer cannot have two outputs yet and
therefore the two parts need to be separate components).

	Parameters

	
	busses –

	model_to_solve –

	Returns

	

	
update_flows(results)

	Updates the flows of the electrolyzer components for each time step.

::param results: The oemof results for the given time step
:type results: object
:return: updated flow values for each flow in the ‘flows’ dict

Power Converter

This module represents a generic power converter. It can be used to model AC-DC, DC-AC, AC-AC or
DC-DC converters.

Scope

Power converters play an important role in diverse renewable energy
systems, by regulating and shaping electrical signals in the
appropriate forms for other components in the system and the demands.

Concept

A simple power converter component is created which intakes an AC or DC electric bus and transforms
it into a different AC or DC electric bus with an assumed constant efficiency. The default
efficiency is taken to be 95%, as stated in [1][2] for AC-DC converters.
In [3] the efficiency for a DC-AC converter is given with 99%. This value should hence be modified
by the user in the model definition. The amount of electricity that can leave the converter is
limited by the defined maximum power.

[image: power_converter.png]

Fig.1: Simple diagram of a power converter.

References

[1] Harrison, K.W. et. al. (2009). The Wind-to-Hydrogen Project: Operational Experience,
Performance Testing, and Systems Integration, NREL.
https://www.nrel.gov/docs/fy09osti/44082.pdf
[2] Hayashi, Y. (2013). High Power Density Rectifier for Highly Efficient Future DC
Distribution System, NTT Facilities Japan.
[3] Sunny Highpower PEAK3 inverter (see manufacturer PDF)

	
class smooth.components.component_power_converter.PowerConverter(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the AC-DC converter component

	bus_input (str) – electric input bus the converter is connected to

	bus_output (str) – electric output bus the converter is connected to

	output_power_max (numerical) – maximum output power [W]

	efficiency (numerical) – efficiency of the converter

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component using the information given in
the PowerConverter class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

Sink

A generic sink component (usually for excess electricity, heat etc.) is
created through this class.

Scope

A sink component is a virtual component that usually represents excesses
in an energy system e.g. excess electricity or heat production.

Concept

The sink component is generic, where the input bus type and optionally the
maximum input per time step are defined by the user. The default value is set
to very high to represent a limitless capacity.

	
class smooth.components.component_sink.Sink(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the sink component

	input_max (numerical) – maximum input per timestep of commodity e.g.
for excess electricity [Wh], heat [Wh], hydrogen [kg]

	bus_in (str) – input bus of the sink component e.g. the electricity bus

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	commodity_costs (numerical) – costs for the commodities e.g. [EUR/Wh], [EUR/kg]
(negative costs means the system earns money when the commodity enters
the sink component)

	
add_to_oemof_model(busses, model)

	Creates an oemof Sink component from the information given in the Sink
class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

Storage H2

This module represents a hydrogen storage tank.

Scope

Hydrogen can have a significant role in the integration of energy systems with
its storage capabilities. By providing a capacity for storing excess electricity
production, this can result in both the minimization of energy wasteage and
smaller scale energy production systems whilst meeting the same demand. This
is particularly important for cases of seasonal storage, where as an example,
excess electricity production in the summer months with the lowest demands
can be utilized at a later date.

Concept

The hydrogen storage component has a hydrogen bus input and a hydrogen bus
output, which will sometimes be different from each other if another
component in the system requires that the hydrogen has come directly from
the storage, for instance.

[image: h2_storage.png]

Fig.1: Simple diagram of a hydrogen storage.

Initial storage level

The initial storage level is determined by the user through stating the
capacity and the initial storage factor in relation to the capacity:

\[SL_{init} = F_{SL,init} \cdot C\]

	\(SL_{init}\) = initial storage level [kg]

	\(F_{SL,init}\) = initial storage level as a factor of the capacity [-]

	\(C\) = storage capacity [kg]

Wanted storage level

It is optional for the user to define a wanted storage level through the
storage level wanted factor (the default is set to None). If this value
has been defined, then there will be different artificial costs used
depending on whether the storage level is above or below the wanted level.

\[SL_{wanted} = F_{SL,wanted} \cdot C\]

	\(SL_{wanted}\) = wanted storage level [kg]

	\(F_{SL,wanted}\) = wanted storage level as a factor of the capacity [-]

	\(C\) = storage capacity [kg]

Mass and volume

The minimum storage level mass at minimum pressure and the volume of the
storage at maximum pressure are both calculated by initially using an iterative process
where the specific volume is changed. First the initial value for the specific
volume is given:

\[V_{spec,0} = 10\]

	\(V_{spec,0}\) = predfined initial value for specific volume [m³/mol]

Then using the initial value, the iterative process begins:

\[V_{spec,i+1} = \frac{R \cdot T}{p + \frac{rk_{a}}{T^{0.5}
\cdot V_{spec,i} \cdot (V_{spec,i} + rk_{b})}} + rk_{b}\]

	\(V_{spec,i+1}\) = ith + 1 specific volume [m³/mol]

	\(R\) = gas constant [J/(K*mol)]

	\(T\) = storage temperature [K]

	\(p\) = storage pressure [Pa] (\(p_{min}\) for calculating the mass
and \(p_{max}\) for the storage)

	\(rk_{a}\) = Redlich Kwong equation of state parameter a

	\(V_{spec,i}\) = ith specific volume [m³/mol]

	\(rk_{b}\) = Redlich Kwong equation of state parameter b

After ten iterations, the specific volume value is used to obtain the storage volume
and the minimum storage level mass:

\[V = C \cdot \frac{V_{spec}}{M_{r}}\]

\[SL_{min} = V \cdot \frac{M_r}{V_{spec}}\]

	\(V\) = storage volume [m³]

	\(C\) = storage capacity [kg]

	\(V_{spec}\) = specific volume [m³/mol]

	\(M_r\) = molar mass of H2 [kg/mol]

	\(SL_{min}\) = minimum storage level mass [kg]

Pressure

The pressure of the storage is calculated as follows:

\[p = \frac{R \cdot T}{(V \cdot \frac{M_r}{SL} - rk_b)} -
\frac{rk_a}{T^{0.5} \cdot V \cdot \frac{M_r}{SL}
\cdot (V \cdot \frac{M_r}{SL} + rk_b)}\]

	\(p\) = storage pressure [Pa]

	\(SL\) = storage level [kg]

	
class smooth.components.component_storage_h2.StorageH2(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the storage component

	bus_in (str) – hydrogen bus that enters the storage

	bus_out (str) – hydrogen bus that leaves the storage

	p_min (numerical) – minimum pressure of the storage [bar]

	p_max (numerical) – maximum pressure of the storage [bar]

	storage_capacity (numerical) – storage capacity at maximum pressure
(usable storage + minimum storage) [kg]

	life_time (numerical) – lifetime of the component [a]

	initial_storage_factor (numerical) – initial storage level as a factor
of the capacity [-] e.g. 0.5 means half of the capacity

	delta_max (numerical) – maximum chargeable hydrogen in one time step [kg/t] where
t is the step-size

	slw_factor (numerical) – storage level wanted as a factor of the capacity [-]

	vac_in (numerical) – normal variable artificial costs for charging (in) the
storage [EUR/kg]

	vac_out (numerical) – normal variable artificial costs for discharging (out) the
storage [EUR/kg]

	vac_low_in (numerical) – variable artificial costs for charging that apply if
the storage level is below the wanted storage level [EUR/kg]

	vac_low_out (numerical) – variable artificial costs for discharging that apply if
the storage level is below the wanted storage level [EUR/kg]

	set_parameters(params) (function) – updates parameter default values (see generic Component class)

	storage_level_init (numerical) – initial storage level [kg]

	T_crit (numerical) – critical temperature [K]

	p_crit (numerical) – critical pressure [Pa]

	Mr (numerical) – molar mass of H2 [kg/mol]

	R – gas constant [J/(K*mol)]

	rk_a (numerical) – Redlich Kwong equation of state parameter a

	rk_b (numerical) – Redlich Kwong equation of state parameter b

	V (numerical) – storage volume [m³]

	storage_level_min (numerical) – mass at minimum pressure that can’t be used [kg]

	storage_level (numerical) – storage level [kg]

	pressure (numerical) – storage pressure [bar]

	current_vac (list) – current artificial costs for input and output [EUR/kg]

	
add_to_oemof_model(busses, model)

	Creates an oemof Generic Storage component from the information given in
the StorageH2 class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
get_mass(p, V=None)

	Calculates the mass of the storage at a certain pressure.

	Parameters

	
	p (numerical) – pressure [bar]

	V (numerical) – storage volume [m³]

	Returns

	mass of the storage [kg]

	
get_pressure(m)

	Calculates the storage pressure for a given mass.

	Parameters

	m (numerical) – mass [kg]

	Returns

	pressure [bar]

	
get_volume(p, m)

	Calculates the volume needed to fit a certain mass at given pressure.

	Parameters

	
	p (numerical) – pressure [bar]

	m (numerical) – mass [kg]

	Returns

	volume of the storage [m³]

	
prepare_simulation(components)

	Prepares the simulation by setting the appropriate artificial costs and
the maximum chargeable hydrogen in one time step (delta max).

	Parameters

	components (list) – List containing each component object

	Returns

	artificial costs and delta max

	
update_states(results)

	Updates the states of the storage component for each time step

	Parameters

	results (object) – oemof results for the given time step

	Returns

	updated state values for each state in the ‘state’ dict

Stratified Thermal Storage

This module represents a stratified thermal storage tank, based on
oemof thermal’s component.

Scope

A stratified thermal storage vessel is able to store thermal energy
through stratification, and thus minimise energy wastage in systems.

Concept

This component has been largely based on oemof thermal’s stratified
thermal storage component. Visit oemof thermal’s readthedocs site for
detailed information on how the component was constructed [1].

[image: stratified_thermal_storage.png]

Fig.1: Simple diagram of an electric heater.

References

	[1] oemof thermal (2019). Stratified thermal storage, Read the Docs:

	https://oemof-thermal.readthedocs.io/en/latest/stratified_thermal_storage.html

	
class smooth.components.component_stratified_thermal_storage.StratifiedThermalStorage(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the stratified thermal storage component

	bus_in (str) – thermal bus input of the storage

	bus_out (str) – thermal bus output of the storage

	storage_capacity (numerical) – storage capacity [Wh]

	storage_level_min (numerical) – minimum storage level relative to storage capacity [-]

	storage_level_max (numerical) – maximum storage level relative to storage capacity [-]

	max_heat_flow_charge (numerical) – maximum heat charged into the storage per timestep [Wh]

	max_heat_flow_discharge (numerical) – maximum heat discharged from the storage per timestep [Wh]

	storage_level_init (numerical) – initial storage level [Wh]

	life_time (numerical) – lifetime of the component [a]

	nominal_value (numerical) – value that the timeseries should be multipled by, default is 1

	csv_filename – csv filename containing the desired demand timeseries

	csv_separator (str) – separator of the csv file e.g. ‘,’ or ‘;’, default is ‘,’

	column_title (str or int) – column title (or index) of the timeseries, default is 0

	path (str) – path where the timeseries csv file can be located

	density (numerical) – density of the storage medium [kg/m3]

	heat_capacity (numerical) – heat capacity of the storage medium [J/(kg*K)]

	temp_h (numerical) – hot temperature level of the stratified storage tank [K]

	temp_c (numerical) – cold temperature level of the stratified storage tank [K]

	temp_env (numerical) – environment temperature value [C] because timeseries usually in degrees C

	height_diameter_ratio (numerical) – height to diameter ratio of storage tank [-]

	s_iso (numerical) – thickness of isolation layer [m]

	lamb_iso (numerical) – heat conductivity of isolation material [W/(m*K)]

	alpha_inside (numerical) – heat transfer coefficient inside [W/(m2*K)]

	alpha_outside (numerical) – heat transfer coefficient outside [W/(m2*K)]

	vac_in (numerical) – normal var. art. costs for charging in the storage [EUR/Wh]

	vac_out (numerical) – normal var. art. costs for discharging out the storage [EUR/Wh]

	storage_level_wanted (numerical) – if a storage level is set as wanted, the vac_low costs apply if the storage is below that level [Wh].

	vac_low_in (numerical) – var. art. costs that apply if storage level is below wanted storage level [Wh]

	vac_low_out (numerical) – var. art. costs that apply if storage level is below wanted storage level [Wh]

	set_parameters(params) (function) – updates parameter default values (see generic Component class)

	storage_level (numerical) – storage level [Wh]

	current_vac (array) – stores the current artificial costs for input and output [EUR/Wh]

	volume (numerical) – storage volume [m³]

	diameter (numerical) – diameter of the storage [m]

	u_value (numerical) – thermal transmittance [W/(m2*K)]

	loss_rate (numerical (sequence or scalar)) – relative loss of the storage capacity between
two consecutive timesteps [-]

	fixed_losses_relative (numerical (sequence or scalar)) – losses independent of state of charge between
two consecutive timesteps relative to nominal storage capacity [-]

	fixed_losses_absolute (numerical (sequence or scalar)) – losses independent of state of charge and independent
of nominal storage capacity between two consecutive timesteps [Wh]

	
add_to_oemof_model(busses, model)

	Creates an oemof GenericStorage component from the information given in the
Stratified Thermal Storage class, to be used in the oemof model

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
calculate_losses(u_val, d, de, h_c, t_c, t_h, t_env, time_increment=1)

	Calculates the loss rate and the fixed losses for the stratified thermal storage

	Parameters

	
	u_val (numerical) – thermal transmittance [W/(m2*K)]

	d (numerical) – diameter of storage tank [m]

	de (numerical) – density of the storage medium [kg/m3]

	h_c (numerical) – heat capacity of storage medium [J/(kg*K)]

	t_c (numerical) – cold temperature level of the stratified storage tank [K]

	t_h (numerical) – hot temperature level of the stratified storage tank [K]

	t_env (numerical (sequence or scalar)) – environmental temperature [K]

	time_increment (numerical) – time increment of the oemof.solph.EnergySytem [h]

	Returns

	loss rate, relative fixed losses and absolute fixed losses

	
calculate_storage_u_value(a_in, s_iso, l_iso, a_out)

	Calculates the u value (thermal transmittance) of storage envelope

	Parameters

	
	a_in (numerical) – heat transfer coefficient inside [W/(m2*K)]

	s_iso (numerical) – thickness of isolation layer [m]

	l_iso (numerical) – heat conductivity of isolation material [W/(m*K)]

	a_out (numerical) – heat transfer coefficient outside [W/(m2*K)]

	Returns

	u value

	
get_diameter(V, h_d_ratio)

	Calculates the diameter of the storage tank

	Parameters

	
	V (numerical) – storage tank volume [m3]

	h_d_ratio (numerical) – height to diameter ratio of storage tank [-]

	Returns

	storage tank diameter

	
get_volume(s_c, h_c, de, t_h, t_c)

	Calculates the storage tank volume

	Parameters

	
	s_c (numerical) – storage capacity [Wh]

	h_c (numerical) – heat capacity of storage medium [J/(kg*K)]

	de (numerical) – density of the storage medium [kg/m3]

	t_h (numerical) – hot temperature level of the stratified storage tank [K]

	t_c (numerical) – cold temperature level of the stratified storage tank [K]

	Returns

	storage tank volume

	
prepare_simulation(components)

	Prepares the simulation by applying the appropriate variable artificial costs

	Parameters

	components (list) – List containing each component object

	Returns

	array containing var. art. costs in and out of the storage

	
update_states(results)

	Updates the states of the thermal storage component for each time step

	Parameters

	results (object) – oemof results for the given time step

	Returns

	updated state values for each state in the ‘state’ dict

Supply

A generic supply component (usually for grid supplied electricity, heat etc.) is
created through this class.

Scope

A supply component is a generic component that represents a supply to the energy
system such as an electricity grid or a hydrogen grid.

Concept

The output bus type and
the maximum output per timestep are defined by the user, and similarly to in
the sink component, the default maximum output value is set to very high to
represent a limitless capacity.

Artificial costs

There are some energy systems where the supply component should be incentivised
to be used in certain scenarios and not in others. As an example, an energy
system with renewable energy electricity production, the electricity grid as
an alternative supply and hydrogen production/storage is considered.

If the hydrogen storage is over a defined threshold, then the system wants to
prioritise using the stored hydrogen as an energy source instead of extracting
energy from the grid, which is achieved by setting high artificial costs on
the use of the grid component. If the hydrogen storage is below the defined
threshold, however, then the system is incentivised to use the grid so that
the storage does not entirely run out.

	
class smooth.components.component_supply.Supply(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the supply component

	output_max (numerical) – maximum output per timestep of commodity e.g. for the electricity grid [Wh],
thermal grid [Wh], H2 grid [kg/h]

	bus_out (str) – output bus of the supply component e.g. the electricity bus

	fs_threshold (numerical) – threshold value for artificial costs

	fs_low_art_cost (numerical) – low artificial cost value e.g. [EUR/Wh], [EUR/kg]

	fs_high_art_cost (numerical) – high artificial cost value e.g. [EUR/Wh], [EUR/kg]

	fs_pressure (numerical) – pressure of the supply if required (default is None) [bar]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	current_ac (numerical) – current artificial cost value e.g. [EUR/Wh], [EUR/kg]

	
add_to_oemof_model(busses, model)

	Creates an oemof Source component from the information given in the Supply
class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
prepare_simulation(components)

	Prepares the simulation by updating the artificial costs for the current
time step (dependant on foreign states) and sets the total costs for the commodity
for this time step (costs + artificial costs)

	Parameters

	components (list) – List containing each component object

	Returns

	total costs for the commodity for this time step e.g. [EUR/Wh], [EUR/kg]

Trailer Gate

A trailer gate component is created to limit the flows into the trailer
component depending on whether delivery is possible or not.

Scope

The trailer gate component is a virtual component, so would not be found
in a real life energy system, but is used in parallel with the trailer
components to restrict the flows into the trailers depending on if
delivery is possible or not.

Concept

A transformer component is used with a hydrogen bus input and a
hydrogen bus output, where the hydrogen bus input comes from e.g.
the production site and the hydrogen bus output goes to the trailer.
The flow of hydrogen allowed to enter the trailer is controlled by
the flow switch and whether delivery is possible in the given timestep
or not.

	
class smooth.components.component_trailer_gate.TrailerGate(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the trailer gate component

	max_input (numerical) – maximum mass of hydrogen that can flow into
the component [kg]

	trailer_distance (numerical) – distance for trailer delivery [km]

	driver_costs (numerical) – driver costs [EUR/h]

	bus_in (numerical) – input hydrogen bus [kg]

	bus_out (numerical) – output hydrogen bus [kg]

	round_trip_distance (numerical) – round trip distance from origin to destination [km]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	flow_switch (int) – determines whether there is a flow in the current timestep:
0 = off, 1 = on

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from the information given in the
TrailerGate class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
prepare_simulation(components)

	Updates artificial costs for this time step (dependent on foreign
states) and determines the maximum hydrogen input for the
component.

	Parameters

	components (list) – List containing each component object

	Returns

	artificial costs and maximum allowed hydrogen input

	
update_var_costs()

	Calculates variable costs of the component which only applies if the
trailer is used, based on the distance travelled by the trailer.

Trailer Gate Cascade

A cascade trailer gate component is created to control the output flows from
a trailer delivery to a destination site.

Scope

Similarly to the other gate components, the cascade trailer gate component is
virtual and would not be found in a real life energy system. This component
is used in parallel with the trailer cascade component to control how
hydrogen is distributed between destination sites in the same trip.

Concept

A transformer component is used with a hydrogen bus input and a hydrogen bus
output, where the hydrogen is inputted from the trailer and outputted to the
destination site. The amount of hydrogen that can be delivered to the
destination site is restricted by the maximum input value that is determined
in the cascade trailer component. Notably, a different gate component
should be created for each destination site.

	
class smooth.components.component_trailer_gate_cascade.TrailerGateCascade(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the cascade trailer gate component

	max_input (numerical) – maximum mass of hydrogen that can flow into the
component [kg]

	bus_in (numerical) – input hydrogen bus [kg]

	bus_out (numerical) – output hydrogen bus [kg]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from the information given in the
TrailerGateCascade class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
prepare_simulation(components)

	Sets the maximum input of the component by using the value
calculated in the cascade trailer component as a foreign state.

	Parameters

	components (list) – List containing each component object

	Returns

	maximum allowed hydrogen input

Trailer H2 Delivery

This module represents a hydrogen trailer delivery from multiple
production sites.

Scope

Hydrogen trailers can be crucial in an energy system as a means of transporting
hydrogen from the production site to the destination site (e.g. a refuelling
station).

Concept

The hydrogen trailer component is a transformer component with a hydrogen
bus input and a hydrogen bus output, which should be distinct from each other
in order to maintain a one way flow from the production site to the destination
site.

[image: trailer_h2_delivery.png]

Fig.1: Simple diagram of a hydrogen delivery trailer

This component should be used in parallel with the trailer gate
component. The amount of hydrogen that can be transported in a given time step is
determined, and this value restricts the flow in the component. A simple
depiction of how the concept for the single hydrogen delivery trailer is shown in
Figure 2.

[image: multiple_trailer_delivery.png]

Fig.2: Multiple hydrogen delivery trailer concept

Trailer activity

In this component, the trailer has the option of transporting hydrogen from
multiple production sites to one destination. Thresholds are set for both
the origin and destination storages. The component then:

	Checks the level of destination storage component: if it is below specified
threshold, low artificial costs are implemented (to encourage system to fill it).

	Checks the level of the origin storage components and chooses the one with
maximum available mass of hydrogen

	Takes into consideration the mass of hydrogen in the chosen origin storage
component and the destination storage, as well as the trailer capacity, and
transports the maximum possible amount of hydrogen.

	Considers the round trip distance along with the assumptions that the
trailer can travel at 100 km/h and that the refuelling time for the trailer
is 15 minutes. With this information, it is determined whether or not
delivery is possible for the following time step with the trailer.

	
class smooth.components.component_trailer_h2_delivery.TrailerH2Delivery(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the trailer components

	bus_in (str) – input hydrogen bus to the trailer

	bus_out (str) – output hydrogen bus from the trailer

	trailer_capacity (numerical) – trailer capacity [kg]

	fs_destination_storage_threshold (numerical) – threshold for destination storage
to encourage/discourage the use of the trailer [-]

	hydrogen_needed (numerical) – mass of hydrogen needed from delivery [kg]

	fs_origin_available_kg (numerical) – foreign state for the available mass of hydrogen
in the origin storage [kg]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	current_ac (numerical) – current artificial cost value [EUR/kg]

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from the information given in the
TrailerH2Delivery class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
prepare_simulation(components)

	Prepares the simulation by determining trailer activity such as
which origin storage to take from and how much hydrogen is needed.

	Parameters

	components (list) – List containing each component object

	Returns

	artificial costs and amount of hydrogen needed

Trailer H2 Delivery Cascade

This module represents a hydrogen trailer delivery from a single
production site to one main destination site, and a secondary
destination site that is dependent on the main site when
necessary.

Scope

Hydrogen trailers can be crucial in an energy system as a means of transporting
hydrogen from the production site to the destination site (e.g. a refuelling
station). Sometimes it is the case that one production site should supply
hydrogen to destination sites that are in close proximity to each other, for
instance. If this is the case, it is beneficial for the energy system
productivity to supply to both storages in one trip. This component represents
a case where there is one main destination site that needs regular delivery,
and one secondary destination site that will receive a delivery in the same
trip as to the main destination site when necessary.

Concept

The cascade hydrogen trailer component is also a transformer component with a
hydrogen bus input and output that are distinct from each other. This component
should be used in parallel with the trailer gate and trailer gate cascade
components. The amount of hydrogen that can be transported in a given time step
is determined, and this value restricts the flow in the component.

[image: trailer_h2_delivery.png]

Fig.1: Simple diagram of a hydrogen delivery trailer

A simple depiction of the concept for the single hydrogen delivery trailer is
shown in Figure 2.

[image: cascade_trailer_delivery.png]

Fig.2: Cascade hydrogen delivery trailer concept

Trailer activity

In this component, the trailer has the option of transporting hydrogen
from one production site to two destination sites that are dependent
on one another. Thresholds are set for the origin and destination storages.
The component then:

	Checks the level of the origin storage component: if it is below specified
threshold, the trailer cannot take hydrogen from it.

	Checks the level of destination storage components: if they are both below
their specified thresholds, then the trailer is incentivised to deliver
to both storages.

	Checks the mass of hydrogen in all storages as well as the trailer
capacity, and transports the maximum possible amount of hydrogen.

	Calculates how much hydrogen should get delivered to the main and
secondary destination storages, prioritising filling up the main
storage when necessary.

	
class smooth.components.component_trailer_h2_delivery_cascade.TrailerH2DeliveryCascade(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unique name given to the trailer component

	bus_in (str) – input hydrogen bus to the trailer

	bus_out (str) – output hydrogen bus from the trailer

	trailer_capacity (numerical) – trailer capacity [kg]

	fs_destination_storage_threshold_1 (numerical) – threshold for main destination
storage to encourage/discourage the use of the trailer [-]

	fs_destination_storage_threshold_2 (numerical) – threshold for secondary destination
storage to encourage/discourage delivery to it [-]

	hydrogen_needed (numerical) – mass of hydrogen needed from delivery [kg]

	output_h2_1 – amount of hydrogen delivered to main destination [kg]

	output_h2_2 – amount of hydrogen delivered to secondary destination [kg]

	fs_origin_available_kg (numerical) – foreign state for the available mass of hydrogen
in the origin storage [kg]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	current_ac (numerical) – current artificial cost value [EUR/kg]

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from the information given in the
TrailerH2DeliveryCascade class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
prepare_simulation(components)

	Prepares the simulation by determining trailer activity and parameters such
as how much hydrogen is needed for delivery and how this should be distributed
between the destination storages.

	Parameters

	components (list) – List containing each component object

	Returns

	artificial costs, amount of hydrogen needed and the amounts delivered
to each storage

Trailer H2 Delivery Single

This module represents a hydrogen trailer delivery from a single
production site.

Scope

Hydrogen trailers can be crucial in an energy system as a means of transporting
hydrogen from the production site to the destination site (e.g. a refuelling
station).

Concept

Similarly to the hydrogen trailer component with multiple production sites, the
single hydrogen trailer component is a transformer component with a hydrogen
bus input and a hydrogen bus output, which should be distinct from each other in
order to maintain a one way flow from the production site to the destination site.

[image: trailer_h2_delivery.png]

Fig.1: Simple diagram of a hydrogen delivery trailer

The only difference between this component and the hydrogen trailer component is
that here, there is only one option for the origin storage and this is
predetermined. This component should be used in parallel with the trailer gate
component. The amount of hydrogen that can be transported in a given time step
is determined, and this value restricts the flow in the component. A simple
depiction of how the concept for the single hydrogen delivery trailer is shown in
Figure 2.

[image: single_trailer_delivery.png]

Fig.2: Single hydrogen delivery trailer concept

Trailer activity

Thresholds are set for both the origin and destination storages. The component
then:

	Checks the level of destination storage component: if it is below specified
threshold, low artificial costs are implemented (to encourage system to fill it).

	Checks the level of origin storage component: if it is below specified
threshold, the trailer cannot take any hydrogen from it.

	Checks the mass of hydrogen in both storages along with taking the trailer
capacity into consideration, and transports the maximum possible amount of
hydrogen.

	Considers the round trip distance along with the assumptions that the
trailer can travel at 100 km/h and that the refuelling time for the trailer
is 15 minutes. With this information, it is determined whether or not
delivery is possible for the following time step with the trailer.

	
class smooth.components.component_trailer_h2_delivery_single.TrailerH2DeliverySingle(params)

	Bases: smooth.components.component.Component

	Parameters

	
	name (str) – unqiue name given to the trailer component

	bus_in (str) – input hydrogen bus to the trailer

	bus_out (str) – output hydrogen bus from the trailer

	trailer_capacity (numerical) – trailer capacity [kg]

	fs_destination_storage_threshold (numerical) – threshold for destination storage
to encourage/discourage the use of the trailer [-]

	hydrogen_needed (numerical) – mass of hydrogen needed from delivery [kg]

	fs_origin_available_kg (numerical) – foreign state for the available mass of hydrogen
in the origin storage [kg]

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	current_ac (numerical) – current artificial cost value [EUR/kg]

	
add_to_oemof_model(busses, model)

	Creates an oemof Transformer component from the information given in the
TrailerH2DeliverySingle class, to be used in the oemof model.

	Parameters

	
	busses (dict) – virtual buses used in the energy system

	model (oemof model) – current oemof model

	Returns

	oemof component

	
prepare_simulation(components)

	Prepares the simulation by determining trailer activity and how much
hydrogen is needed

	Parameters

	components (list) – List containing each component object

	Returns

	artificial costs and the amount of hydrogen needed

Variable Grid

	
class smooth.components.component_var_grid.VarGrid(params)

	Bases: smooth.components.component_supply.Supply

An electric grid with different connection levels can be created through this class

Gridlevels [1,2,3,4,5,6] describe the grid connection, if left unmodified these are:
[1] house connection, [2] lov voltage grid, [3] lov voltage local network station
[4] medium voltage grid, [5] medium voltage transformer station, [6] High Voltage.
These can be associated with different output_max, variable costs, capex and opex
for each level.

	Parameters

	
	self.name (str) – unique name of the component

	self.grid_level (int (1-6)) – set the grid level to be used

	self.grid_l1_output_max (int) – Maximum power output of specific grid level [W]

	self.capex_l1 (dict) – Capex for each grid level (e.g grid connection costs)

	self.opex_l1 (dict) – Opex for each grid level (e.g grid maintanance costs)

	self.variable_costs_l1 (numerical) – Variable costs for each grid level (e.g electricity costs)

External Components

This class is created for external components in the system that will not be part of the
optimization, but the CAPEX and OPEX of these components should still be evaluated.

Scope

External components are used in the framework to represent components that do not need
to be included in the simulation/optimization, but nevertheless the annuities in terms
of costs and emissions for the component should be considered. The generic
ExternalComponent class is the mother class for the other external components, providing
a basis for what all external components must have.

Concept

The costs (CAPEX and OPEX) and emissions of the external component are first calculated
(see the update_financials() and
update_emissions() functions), and
then the annuities are calculated using the
update_external_annuities() function.
It should be noted that these costs are not considered in the optimization results as
they are evaluated seperately.

	
class smooth.components.external_component.ExternalComponent

	Bases: object

	Parameters

	
	external_component (str) – external component type

	name (str) – specific name of the external component (must be unique)

	life_time (numerical) – lifetime of the external component [a]

	sim_params (object) – simulation parameters such as the interval time and interest rate

	results (dict) – dictionary containing the main results for the component

	capex (dict) – capital costs

	opex (dict) – operational and maintenance costs

	op_emissions (dict) – operational emission values

	fix_emissions (dict) – fixed emission values

	
check_validity()

	This function is called immediately after the component object is created
and checks if the component attributes are valid.

	Raises

	ValueError – Value error raised if the life time is not defined or is less
than or equal to 0

	
generate_results()

	Generates the results after the simulation.

	Returns

	Results for the calculated emissions, financials and annuities

	
set_parameters(params)

	Sets the parameters that have been defined by the user (in the model definition) in
the necessary components, overwriting the default parameter values.

	Parameters

	params (dict ToDo: make sure of this, maybe list) – The set of parameters defined in the specific external component class

	Raises

	ValueError – raised if the parameter defined by the user is not part of the external component

	Returns

	None

H2 Dispenser

This external component class is created to represent the dispenser unit
of a hydrogen refuelling station.

Scope

The dispenser unit of a hydrogen refuelling station does not need to be
included in the optimization of an energy system, as the number of units
necessary can be calculated from the hydrogen demand, but the costs of
the dispensers should be considered in the final evaluation of the energy
system.

Concept

This component requires a demand time series in the form of a CSV file. From
this file, the maximum hydrogen demand in one time step is found. Then, the
number of times each hose can refuel a vehicle per hour is calculated, as
well as the maximum number of vehicles that require refuelling per hour.
The number of dispenser units required is then calculated as follows:

\[U = \frac{V_{max}}{H \cdot R}\]

	\(U\) = number of dispenser units required [-]

	\(V_{max}\) = maximum number of vehicles that need refuelling in an hour [-]

	\(H\) = number of hoses per dispenser [-]

	\(R\) = number of possible refuels per hour [-]

	
class smooth.components.external_component_h2_dispenser.H2Dispenser(params)

	Bases: smooth.components.external_component.ExternalComponent

	Parameters

	
	name (str) – unique name given to the H2 dispenser component

	life_time (numerical) – life time of the component [a]

	vehicle_tank_size (numerical) – vehicle tank size - 40 kg for a bus and 5 kg for a
passenger car are used as default [kg]

	number_of_hoses (int) – number of hoses (access points) attached to the
dispenser - default is set to 2 [-]

	refuelling_time (numerical) – refuelling time to fill up the specified tank [min]
- default is set to 15

	nominal_value (numerical) – value that the timeseries should be multipled by, default is 1

	csv_filename – csv filename containing the desired demand timeseries e.g.
‘my_demand_filename.csv’

	csv_separator (str) – separator of the csv file e.g. ‘,’ or ‘;’, default is ‘,’

	column_title (str or int) – column title (or index) of the timeseries, default is 0

	path (str) – path where the timeseries csv file can be located

	set_parameters(params) (function) – updates parameter default values
(see generic Component class)

	data (pandas dataframe) – dataframe containing data from timeseries

	max_hourly_h2_demand (numerical) – maximum value per timestep

	number_of_refuels_per_hour (numerical) – number of times each hose can refuel a
vehicle per hour

	max_number_of_vehicles (numerical) – maximum amount of vehicles that need
refuelling per hour

	number_of_units (numerical) – number of dispenser units required in order to
satisfy the demand

Submodules

Module contents

smooth.examples package

Submodules

Example Model

This example represents a simple hydrogen energy system model definition.

1. The virtual busses to be used in the system are defined as a list. In this
example, an electricity bus (bel), a low pressure hydrogen bus (bh2_lp),
a high pressure hydrogen bus (bh2_hp) and a thermal bus (bth) are used.

busses = ['bel', 'bh2_lp', 'bh2_hp', 'bth']

2. The components are created in a list. An example of a component being
added to the list is as follows:

components = list()
components.append({
 'component': 'electrolyzer',
 'name': 'this_ely',
 'bus_el': 'bel',
 'bus_h2': 'bh2_lp',
 'power_max': 100e3,
 'temp_init': 293.15,
 'life_time': 20,
 'capex': {
 'key': ['free', 'spec'],
 'fitting_value': [[193, -0.366], 'cost'],
 'dependant_value': ['power_max', 'power_max']
 },
 'opex': {
 'key': 'spec',
 'fitting_value': 0.04,
 'dependant_value': 'capex',
 }
})

	The simulation parameters are stated:

sim_params = {
 'start_date': '1/1/2019',
 'n_intervals': 10,
 'interval_time': 60,
 'interest_rate': 0.03,
 'print_progress': False,
 'show_debug_flag': False,
}

	A model is created containing the above three elements

mymodel = {
 'busses': busses,
 'components': components,
 'sim_params': sim_params
}

Now this model definition is ready to be used in either a simulation or an
optimization.

Example Model (costs)

This example is here to show how the various cost fitting methods can be
implemented in the model definition. It should be noted that the actual
cost values chosen here are arbitrary. The fitting method of the cost is
chosen by the key, and the possible fitting methods are:

Fixed cost (‘fix’)

Here, no fitting is done. The value given in the definition is the cost value.
The cost value for CAPEX is taken in EUR while the cost value for OPEX is taken
in EUR/a.

cost = cost

An example of this could be as follows for a compressor component:

components.append({
 'component': 'compressor_h2',
 'name': 'h2_compressor',
 # Busses
 'bus_h2_in': 'bh2_lp',
 'bus_h2_out': 'bh2_hp',
 # Parameters
 'bus_el': 'bel',
 'm_flow_max': 33.6 * 2,
 'life_time': 20,
 # Foreign states
 'fs_component_name': ['h2_storage', None],
 'fs_attribute_name': ['pressure', 700],
 # Financials
 'capex': {
 'key': 'fix',
 'fitting_value': None,
 'dependant_value': None,
 'cost': 2000
 },
 'opex': {
 'key': 'fix',
 'fitting_value': None,
 'dependant_value': None,
 'cost': 200
 }
 })

Here the cost of the compressor is independant of any other parameter
(fitting_value/dependant_value = None), at 2000 EUR for the CAPEX
and 200 EUR/a for the OPEX.

Specific cost (‘spec’)

The specific cost key means that the cost is dependant on one component
parameter (e.g. EUR/kW). The value of the dependant_value is the parameter
name in the form of a string (e.g. ‘power_max’). The fitting_value is
then multiplied with the dependant value to obtain the final costs.

cost = fitting_value * component[dependant_value]

An example of this can be seen with the following PV component:

components.append({
 'component': 'energy_source_from_csv',
 'name': 'pv_output',
 'bus_out': 'bel',
 'csv_filename': 'ts_pv_1kW.csv',
 'csv_separator': ',',
 'nominal_value': 100,
 'column_title': 'Power output [W]',
 'path': my_path,
 'life_time': 20,
 'capex': {
 'key': 'spec',
 'fitting_value': 975.57,
 'dependant_value': 'nominal_value',
 },
 'opex': {
 'key': 'spec',
 'fitting_value': 0.02,
 'dependant_value': 'capex',
 }
})

This implies that the CAPEX of the PV system is 975.57 EUR/nominal_value
where the nominal_value is the number of kilowatts, and that the
OPEX is 2% of the CAPEX per annum.

Exponential cost (‘exp’)

The exponential fitting of the cost means that two or three entries can be
given as the fitting_value, and the costs are then calculated in the following
way:

for two fitting values [fv_1, fv_2]:
cost = fv_1 * exp(dependant_value * fv_2)

for three fitting values [fv_1, fv_2, fv_3]:
cost = fv_1 + fv_2 * exp(dependant_value * fv_3)

An example of this is shown with a wind component:

components.append({
 'component': 'energy_source_from_csv',
 'name': 'wind_output',
 'bus_out': 'bel',
 'csv_filename': 'ts_wind_1kW.csv',
 'csv_separator': ',',
 'nominal_value': 10,
 'column_title': 0,
 'path': my_path,
 'life_time': 10,
 'capex': {
 'key': 'exp',
 'fitting_value': [750, 0.5],
 'dependant_value': 'nominal_value',
 },
 'opex': {
 'key': 'spec',
 'fitting_value': 0.02,
 'dependant_value': 'capex',
 }
})

This demonstrates that the CAPEX of the wind system costs \(750 \cdot e^{\frac{nv}{2}}\)
EUR, and that the OPEX costs 2% of the CAPEX per annum, where nv is the nominal_value.

Polynomial cost (‘poly’)

For the polynomial cost function, an arbitrary number of fitting values are defined
and the cost is then calculated as follows:

for an arbitrary number of fitting values [fv_1, fv_2, fv_3, ..., fv_n]
cost = fv_1 + fv_2 * dependant_value**1 + fv_3 * dependant_value**2 + ...
 + fv_n * dependant_value**(n-1)

This can be demonstrated with the costs of a storage component:

components.append({
 'component': 'storage_h2',
 'name': 'h2_storage',
 'bus_in': 'bh2_lp',
 'bus_out': 'bh2_lp',
 'p_min': 5,
 'p_max': 450,
 'storage_capacity': 500,
 'life_time': 30,
 'capex': {
 'key': 'poly',
 'fitting_value': [604.6, 0.5393],
 'dependant_value': 'p_max'
 },
 'opex': {
 'key': 'spec',
 'fitting_value': 0.01,
 'dependant_value': 'capex'
 },
})

Here, the costs for the storage component are \(604.6 + (p_{max} \cdot {0.5393})\) for
the CAPEX (EUR) and the OPEX is 1% of the CAPEX per annum.

Free cost (‘free’)

The free cost is similar to the polynomial fitting, but here the exponents can be chosen
freely:

for an even number of fitting values [fv_1, fv_2, fv_3, ..., fv_n]
cost = fv_1 * dependant_value**fv_2 + fv_3 * dependant_value**fv_4 + ...
 + fv_(n-1) * dependant_value**fv_n

This is also demonstrated with the storage component:

components.append({
 'component': 'storage_h2',
 'name': 'h2_storage',
 'bus_in': 'bh2_lp',
 'bus_out': 'bh2_lp',
 'p_min': 5,
 'p_max': 450,
 'storage_capacity': 500,
 'life_time': 30,
 'capex': {
 'key': 'free',
 'fitting_value': [600, 0.5, 0.8, 0.2],
 'dependant_value': 'p_max'
 },
 'opex': {
 'key': 'spec',
 'fitting_value': 0.01,
 'dependant_value': 'capex'
 },
})

This means that the CAPEX for the storage would be
\(600 \cdot p_{max}^{0.5} + 0.8 \cdot p_{max}^{0.2}\) (EUR)
and the OPEX would be 1% of the CAPEX per annum.

Addition of two functions

It is also possible to add two functions together if the cost equation requires
this. An example of this can again be seen in a storage component where both the
specific and polynomial fittings are used:

components.append({
 'component': 'storage_h2',
 'name': 'h2_storage',
 'bus_in': 'bh2_lp',
 'bus_out': 'bh2_lp',
 'p_min': 5,
 'p_max': 450,
 'storage_capacity': 500,
 'life_time': 30,
 'capex': {
 'key': ['spec', 'poly'],
 'fitting_value': [600, ['cost', 100]],
 'dependant_value': ['storage_capacity', 'p_max'],
 },
 'opex': {
 'key': 'spec',
 'fitting_value': 0.01,
 'dependant_value': 'capex'
 },
})

The above example entails that the CAPEX of the storage component here is
\(600 \cdot s_{c} + 100 \cdot p_{max}\). In
stages it can be broken down as follows:

	The first part of the cost is calculated using the specific function
(\(600 \cdot s_{c}\)).

	Then the value for this is taken as the new ‘cost’ value which can
be then used as a free value for further calculations.

	The previously calculated ‘cost’ value is then used as the first free
variable in a polynomial function to obtain
\(600 \cdot s_{c} + 100 \cdot p_{max}\).

Variable dicts for costs (CAPEX/OPEX)

There is also the option to include multiple dictionaries containing
varying cost functions depending on a parameter. As an example,
this can be useful for considering the economies of scale, where
specific costs of a unit decrease with increasing scale. The
variable dicts for costs can be defined as follows:

components.append({
 'component': 'supply',
 'name': 'from_grid',
 'bus_out': 'bel',
 'output_max': 1200e3,
 'variable_costs': 0.00001,
 'dependency_flow_costs': ('from_grid', 'bel'),
 'life_time': 1,
 'capex': {
 'key': 'variable',
 'var_dict_dependency': 'output_max',
 'var_dicts':
 [
 {
 'low_threshold': 0,
 'high_threshold': 900e3,
 'key': 'free',
 'fitting_value': [2, 3],
 'dependant_value': 'output_max'
 },
 {
 'low_threshold': 1000e3,
 'high_threshold': 5000e3,
 'key': ['spec', 'poly'],
 'fitting_value': [10, ['cost', 1]],
 'dependant_value': ['output_max', 'life_time'],
 },
 {
 'low_threshold': 5000e3,
 'high_threshold': float('inf'),
 'key': 'spec',
 'fitting_value': 50,
 'dependant_value': 'output_max',
 },
],
 },
 'opex': {
 'key': 'variable',
 'var_dict_dependency': 'output_max',
 'var_dicts': [
 {
 'low_threshold': 0,
 'high_threshold': 1000e3,
 'key': 'spec',
 'fitting_value': 0.04,
 'dependant_value': 'capex',
 },
 {
 'low_threshold': 1000e3,
 'high_threshold': 5000e3,
 'key': 'spec',
 'fitting_value': 0.02,
 'dependant_value': 'capex',
 },
]
 },
})

This shows the varying CAPEX and OPEX costs of the electricity supply from
the grid, depending on its size. If the key ‘variable’ is defined, multiple
CAPEX or OPEX costs can be defined depending on the value of one attribute
of the component. This attribute is defined for the ‘var_dict_dependency’ key.

The specific dict that is used in the system is chosen if:

low_threshold <= value(var_capex_dependency) < high_threshold

It should be noted that the number of dicts can be chosen freely, but
they must be defined in ascending order. Also, gaps are fine between
defined ranges whereas overlapping ranges are not possible. However,
any values that lie within the gaps cannot be considered in the
system because a cost has not been assigned to these values. The above
example states that:

	If the chosen maximum output power from the grid is less than 900 kW, the
CAPEX is \(2 \cdot output_{max}^{3}\) EUR

	If the chosen maximum output power from the grid is between 1000 kW and
5000 kW, the CAPEX is \(10 \cdot output_{max} + lifetime\) EUR

	If the chosen maximum output power from the grid is above 5000 kW, the
CAPEX is \(50 \cdot output_{max}\) EUR

	If the chosen maximum output power from the grid is less than 1000 kW, the
OPEX is 4% of the CAPEX

	If the chosen maximum output power from the grid is between 1000 kW and
5000 kW, the OPEX is 2% of the CAPEX

Example Model (dict)

This example demonstrates how the components can be created in a dictionary
instead of a list, which has advantages over the list form such as the
inherent uniqueness of component names as well as easier access to components
by name. This is particularly useful for large systems with many components.

An example of a component created as a dictionary entry is displayed below:

components = {
 "this_ely": {
 "component": "electrolyzer",
 "bus_el": "bel",
 "bus_h2": "bh2_lp",
 "power_max": 100000.0,
 "temp_init": 293.15,
 "life_time": 20,
 "capex": {
 "key": [
 "free",
 "spec"
],
 "fitting_value": [
 [
 193,
 -0.366
],
 "cost"
],
 "dependant_value": [
 "power_max",
 "power_max"
]
 },
 "opex": {
 "key": "spec",
 "fitting_value": 0.04,
 "dependant_value": "capex"
 }
}

Example Model (emissions)

This example represents a simple hydrogen energy system with the
inclusion of emissions as well as costs.

The only difference between this example and the Example Model is that
additional parameters are added to the components with relation to
emissions. For example, the electrolyzer component is now defined as follows:

components.append({
 'component': 'electrolyzer',
 'name': 'this_ely',
 # Busses
 'bus_el': 'bel',
 'bus_h2': 'bh2_lp',
 # Parameters
 'power_max': 100e3,
 'temp_init': 293.15,
 'life_time': 20,
 # Foreign states
 # Financials
 'capex': {
 'key': ['free', 'spec'],
 'fitting_value': [[193, -0.366], 'cost'],
 'dependant_value': ['power_max', 'power_max']
 },
 'opex': {
 'key': 'spec',
 'fitting_value': 0.04,
 'dependant_value': 'capex',
 },
 # Emissions
 'fix_emissions': {
 'key': ['free', 'spec'],
 'fitting_value': [[193, -0.366], 'cost'],
 'dependant_value': ['power_max', 'power_max']
 },
})

Example Model (external components)

This example is similar to the Example Model but with the inclusion of
external components that are not included in the simulation/optimization,
although the costs should still be considered.

The only changes in this example are the creation of external components
in a list. The ‘H2 Dispenser’ external component is used here, which
calculates the needed number of dispenser units to fulfill the hydrogen
load (specified in a given CSV file). External components can be
included in the model definition in the following way:

external_components = list()

external_components.append({
 'external_component': 'h2_dispenser',
 'name': 'test',
 'life_time': 20,
 # Financials
 'capex': {
 'key': 'spec',
 'fitting_value': 107000,
 'dependant_value': 'number_of_units'
 },
 'opex': {
 'key': 'spec',
 'fitting_value': 0.05,
 'dependant_value': 'capex'
 },
 'csv_filename': 'ts_demand_h2.csv',
 'nominal_value': 1,
 'column_title': 'Hydrogen load',
 'path': my_path
})

And now the model includes the external components too:

mymodel = {
 'busses': busses,
 'components': components,
 'sim_params': sim_params,
 'external_components': external_components
}

Example Model (plotting dicts)

In order to label the components and busses differently to those set in the
components and model description, dictionaries are created which are then
imported in other functions such as
plot_smooth_results(). An
English set of dictionaries and a German set of dictionaries has been created
to easily switch between the two languages, and the same can be applied to
any other language.

Run Optimization Example

This example demonstrates how to use the optimization algorithm.

	Define the optimization parameters. This dict needs the following information:

	genetic algorithm parameters

	information on the attributes to vary

	Define the variables for the genetic algorithm:

	number of individuals in the population

	number of generations that will be evaluated

	number of cores used in the optimization

	the visibility of the pareto front

	the occurence of post-processing

	the objective functions to maximise/minimise

	whether or not intermediate results should be saved

	whether or not the detailed final results should be saved

For instance, in the below example of the variables being defined, the
optimization is based on minimizing costs and emissions, evaluating 8
individuals for 2 generations with the use of the maximum possible
number of cores available.

opt_params['ga_params'] = {
 'population_size': 8,
 'n_generation': 2,
 'n_core': 'max',
 'plot_progress': True,
 'post_processing': True,
 'save_intermediate_results': True,
 'objectives': (
 lambda x: -sum([c.results["annuity_total"] for c in x]),
 lambda x: -sum([c.results["annual_total_emissions"] for c in x]),
),
 'objective_names': ('costs', 'emissions'),
 'SAVE_ALL_SMOOTH_RESULTS': False,
}

	Define the attribute variation information that will be used by the genetic algorithm:

	component name

	component attribute that will be varied in the optimization

	the range (minimum and maximum value) to be considered in the variation process

	the stepsize to be considered within the range

As an example, here is how the variation of an electrolyzer’s power between 100 kW
and 2000 kW with a stepsize of 50 kW is defined:

var_ely_power = {
 'comp_name': 'this_ely',
 'comp_attribute': 'power_max',
 'val_min': 100e3,
 'val_max': 2000e3,
 'val_step': 50e3
}

	Add the attribute variation information to the optimization parameters:

opt_params['attribute_variation'] = [var_ely_power, var_storage_capacity]

Run Smooth Example

This example shows how a simulation in SMOOTH can be defined.

	The run_smooth() function is called which instigates
the simulation, and the results are saved in the smooth_result parameter.

	The results are plotted using the smooth_result and the dictionary of
choice for the axis/labels with the plot_results()
function.

	The results are printed in the terminal by calling the
print_results() function.

	The results are saved as a pickle file with the
save_results() function, that can later be
loaded with the load_results() function.

	The costs of the external components are calculated by using the
costs_for_ext_components()
function.

Module contents

smooth.framework package

Subpackages

	smooth.framework.functions package
	Submodules

	smooth.framework.functions.calculate_external_costs module

	smooth.framework.functions.debug module

	smooth.framework.functions.functions module

	smooth.framework.functions.load_results module

	smooth.framework.functions.plot_results module

	smooth.framework.functions.print_results module

	smooth.framework.functions.save_results module

	smooth.framework.functions.update_annuities module

	smooth.framework.functions.update_fitted_cost module

	Module contents

Submodules

Run SMOOTH

This is the core of smooth.
It solves (M)ILP of an energy system model for discrete time steps using the
Open Energy Modelling Framework solver (oemof-solph [https://github.com/oemof/oemof-solph]).

How to use

The run_smooth() function expects an energy model. Such a model consists of:

	energy sources

	energy sinks

	energy transformers

	buses to transport energy

Additionally, simulation parameters are needed to run the model.
A model is therefore defined as a dictionary containing all components,
buses (grouped as busses) and simulation parameters (grouped as sim_params,
see smooth.framework.simulation_parameters.SimulationParameters).

Example:

{
 components: {
 name_of_first_component: {
 component: ...,
 capex: ...,
 opex: ...,
 ...
 },
 ...
 },
 busses: [
 name_of_first_bus,
 name_of_second_bus,
 ...
],
 sim_params: {
 start_date: ...,
 n_intervals: ...,
 interval_time: ...,
 interest_rate: 0.03,
 ...
 }
}

Note

Legacy models (version < 0.2.0) define their components as a list
with an extra field name for each component. This is deprecated.

Result

Two items are returned. The second is a string describing the oemof solver return status.
You want this to be ‘ok’, although other values are possible [http://www.pyomo.org/blog/2015/1/8/accessing-solver].
The first item returned is a list of all components, each updated with

	sim_params: the original simulation parameters, plus date_time_index for each time step and sim_time_span in minutes

	results: results from the simulation

	variable_costs*

	art_costs*

	variable_emissions*

	annuity_capex

	annuity_opex

	annuity_variable_costs

	annuity_total

	annual_fix_emissions

	annual_op_emissions

	annual_variable_emissions

	annual_total_emissions

	states: dictionary with component-specific attributes. Each entry is a list with values for each time step

	flows: dictionary with each flow of this component. Key is tuple (from, to), entry is list with value for each time step

	data: pandas dataframe

	(component-specific attributes)

* a list with a value for each time step

Implementation

The concept of run_smooth() is demonstrated in the figure below:

[image: run_smooth.png]

Fig.1: Concept of run_smooth function.

The run_smooth() function has three distinct phases:
initialization, simulation and post processing.

Initialization

There is not much to see here. Mainly, component instances get created from the
model description. For legacy models (version < 0.2.0), the component list is
converted to a dictionary. No oemof model is built here.

Simulation

This is the main part of the function. For each time step, an oemof model is
solved and evaluated:

	print current time step to console if print_progress is set in parameters

	initialize oemof energy system model

	create buses

	update components and add them to the oemof model

	update bus constraints

	write lp file in current directory

	call solver for model

	check returned status for non#.optimal solution

	handle results for each component

	update flows

	update states

	update costs

	update emissions

Post-processing

After all time steps have been computed, call the generate_results function of each component.
Finally, return the updated components and the last oemof status.

	
smooth.framework.run_smooth.run_smooth(model)

	Runs the smooth simulation framework

	Parameters

	model (dictionary) – smooth model object containing parameters for components, simulation and busses

	Returns

	results of all components and oemof status

	Return type

	tuple of components and string

	Raises

	SolverNonOptimalError if oemof result is not ok and not optimal

Simulation Parameters

	
class smooth.framework.simulation_parameters.SimulationParameters(params)

	Bases: object

Class to store parameters for smooth simulation.

	Parameters

	
	start_date (string representation of date) – the first evaluated time period. Defaults to ‘1/1/2019’

	n_intervals (integer) – number of time steps. Defaults to 24*7=168

	interval_time (integer) – length of one time step in minutes. Defaults to 60 (one hour)

	interest_rate (float) – Interest rate for calculating annuity out of CAPEX. Defaults to 0.03 (3%)

	print_progress (boolean) – Decide if the running progress should be printed out. Defaults to False

	show_debug_flag (boolean) – Decide if last result values should be shown
in case solver was not successful. Defaults to True

	Variables

	
	date_time_index – pandas date range of all time periods to be evaluated

	sim_time_span – length of simulation time range in minutes

	
set_parameters(params)

	Helper function to set simulation parameters on initialisation.

	Parameters

	params (dictionary) – parameters to set

	Raises

	ValueError for unsupported simulation parameters

Module contents

smooth.framework.functions package

Submodules

smooth.framework.functions.calculate_external_costs module

	
smooth.framework.functions.calculate_external_costs.costs_for_ext_components(model)

	Calculates costs for components in the system which are not to be
included in the optimization but their costs must still be taken into consideration.
The name of an external component must be unique within the model.

	Parameters

	model (dictionary) – smooth model

	Returns

	external components

	Return type

	list of Component

	Raises

	ValueError – an external component name is not unique within the model

smooth.framework.functions.debug module

	
smooth.framework.functions.debug.get_df_debug(df_results, results_dict, new_df_results)

	Generate debug info from results.

	Parameters

	
	df_results (pandas dataframe) – results dataframe to compare against (e.g. last iteration)

	results_dict – results dictionary from oemof.processing.parameter_as_dict

	new_df_results (pandas dataframe) – newest results dataframe

	Returns

	debug dataframe

	Return type

	pandas dataframe

	Raises

	TypeError – if df_results or results_dict is not set

	
smooth.framework.functions.debug.show_debug(df_debug, components)

	Print and plot debug info, save to file

	Parameters

	
	df_debug (pandas dataframe) – debug dataframe

	components (list of Component) – result from run_smooth for plotting

smooth.framework.functions.functions module

	
smooth.framework.functions.functions.choose_valid_dict(component, var_dict)

	Function to select a valid dict (capex / fix_emissions) depending on the value
of an attribute of the specific component.

todo: check opex and op_emissions

	Parameters

	
	component (class:~smooth.components.component.Component) – object of this component

	var_dict (dict) – dict object (capex/fix_emissions) of this component

	Returns

	Valid dictionary (capex/fix_emissions) for the actual value
of the depending parameter of the component

	
smooth.framework.functions.functions.create_component_obj(model, sim_params)

	Create components from model.

	Parameters

	
	model (dictionary) – smooth model

	sim_params (SimulationParameters) – simulation parameters

	Returns

	list of components in model

	Return type

	list of Component

	
smooth.framework.functions.functions.cut_suffix(name, suffix)

	Cuts off the suffix from name string, if it ends with it

	Parameters

	
	name (string) – original name from which suffix will be cut off

	suffix – string to be removed

	Returns

	string without suffix

	
smooth.framework.functions.functions.cut_suffix_loop(name_tuple, suffix_list)

	Cuts off all suffixes present in suffix_list from names in name_tuple

	Parameters

	
	name_tuple – tuple of strings from which suffixes will be cut off

	suffix_list – list of strings to be removed

	Returns

	updated name_tuple

	Return type

	tuple of strings

	
smooth.framework.functions.functions.extract_flow_per_bus(smooth_result, name_label_dict)

	Extract dict containing the busses that will be plotted.

	Parameters

	
	smooth_result (list of Component) – result from run_smooth

	name_label_dict – dictionary
with key being a component name in the model and value the name to display

	Returns

	dictionary of all busses from the model with their flow values over time

	
smooth.framework.functions.functions.get_date_time_index(start_date, n_intervals, step_size)

	Function defining the parameters for perfect/myopic foresight.

	Parameters

	
	start_date (string) – the first evaluated time period, e.g. ‘1/1/2019’

	n_intervals (integer) – number of time periods

	step_size (number) – length of one time step in minutes

	Returns

	n_intervals dates, each step_size minutes apart

	Return type

	pandas DateTimeIndex [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html]

	
smooth.framework.functions.functions.get_sim_time_span(n_interval, step_size)

	Calculate the time span of the simulation.

	Parameters

	n_interval (integer) – number of intervals

	Step_size

	length of one time step in minutes

	Returns

	time delta in minutes

	Return type

	number

	
smooth.framework.functions.functions.interval_time_index(date_time_index, i_interval)

	Function to divide the set date time index into hourly intervals.

This function seems to be unused.

	Parameters

	
	date_time_index (DateTimeIndex) – chosen date range for the model

	i_interval (integer) – current interval index

	Returns

	pandas DateTimeIndex [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html] for current interval

	
smooth.framework.functions.functions.read_data_file(path, filename, csv_separator, column_title)

	Function to read the input data files.

	Parameters

	
	path (string) – path where the csv file is located

	filename (string) – name of csv file

	csv_separator (character) – separator of csv data

	column_title (string) – title of data column

	Returns

	column of data from csv file

	Return type

	pandas dataframe

	
smooth.framework.functions.functions.replace_at_idx(tup, i, val)

	Replaces a value at index i of a tuple tup with value val

	Parameters

	
	tup – tuple to be updated

	i (integer) – index at which the value should be replaced

	val (value) – new value at index i

	Returns

	new tuple with replaced value

smooth.framework.functions.load_results module

	
smooth.framework.functions.load_results.load_results(file_path)

	Load the result of either a smooth run or an optimization run by the genetic algorithm.

	Parameters

	file_path (string) – path of the result pickle file

smooth.framework.functions.plot_results module

	
smooth.framework.functions.plot_results.plot_smooth_results(smooth_result, comp_label_dict={'CHP_Methane': 'Biogas-BHKW', 'ch4_grid': 'Biogas-Zufuhr', 'el_demand': 'Strombedarf', 'from_grid': 'Strombezug', 'fuel_cell_chp': 'Brennstoffzelle', 'h2_compressor': 'Wasserstoffkompressor (Hochdruck)', 'h2_compressor_from_ely': 'Wasserstoffkompressor (Niederdruck)', 'h2_demand': 'Wasserstoffbedarf', 'h2_storage': 'Wasserstoffspeicher', 'li_battery': 'Lithium-Batterie', 'pv_output': 'PV-Anlage', 'th_demand': 'Heizbedarf', 'this_ely': 'Elektrolyseur', 'this_pem_ely': 'PEM-Elektrolyseur', 'to_grid': 'Stromeinspeisung', 'wind_output': 'WE-Anlage'}, bus_dict={'bch4': 'Biomethan-Fluss', 'bel': 'Elektrische Leistung', 'bel_pv': 'PV Leistung', 'bel_wind': 'Wind Leistung', 'bh2_hp': 'Wasserstoff-Fluss bei Hochdruck', 'bh2_lp': 'Wasserstoff-Fluss bei Niederdruck', 'bh2_mp': 'Wasserstoff-Fluss bei Mitteldruck', 'bth': 'Thermische Leistung'}, y_dict={'bch4': 'Biomethan in kg/h', 'bel': 'Leistung in W', 'bel_pv': 'Leistung in W', 'bel_wind': 'Leistung in W', 'bh2_hp': 'Wasserstoff in kg/h', 'bh2_lp': 'Wasserstoff in kg/h', 'bh2_mp': 'Wasserstoff in kg/h', 'bth': 'Leistung in W'})

	Create figures of smooth run.

All plots are drawn in a new window.

	Parameters

	
	smooth_result (list of Component) – result from run_smooth containing all components

	comp_label_dict (dictionary, optional) – component labels,
key being the component name in the model and value the name to display.
Defaults to comp_dict_german from example_plotting_dicts.

	bus_dict (dictionary, optional) – bus labels,
key being the bus name in the model and value the name to display.
Defaults to bus_dict_german from example_plotting_dicts.

	y_dict (dictionary, optional) – labels for y-axes,
key being the bus names from the model to plot and value the y-axis labels.
Defaults to y_dict_german from example_plotting_dicts.

smooth.framework.functions.print_results module

	
smooth.framework.functions.print_results.print_smooth_results(smooth_results)

	Print the financial results of a smooth run.

	Parameters

	smooth_results (list of Component) – result from run_smooth containing all components

smooth.framework.functions.save_results module

	
smooth.framework.functions.save_results.save_results(file_name, result_data)

	Save the result of either a smooth run or an optimization run by the genetic algorithm.

	Parameters

	
	file_name (string) – name of the result pickle file

	result_data – data to save

smooth.framework.functions.update_annuities module

	
smooth.framework.functions.update_annuities.calc_annual_emissions(component, target)

	Calculate annual emissions.

	Parameters

	
	component (Component) – object of this component

	target (dict) – dictionary with cost key, e.g. component.fix_emissions

	Returns

	annual emissions of target [kg/a]

	Return type

	number

	
smooth.framework.functions.update_annuities.calc_annuity(component, target)

	Calculate annuity

	Parameters

	
	component (Component) – object of this component

	target (dict) – dictionary with cost key, e.g. component.capex

	Returns

	annuity of target [EUR/a]

	Return type

	number

	
smooth.framework.functions.update_annuities.update_annuities(component)

	Compute the annual CAPEX, variable costs and emissions.

Annuities are written into the results dictionary of the component.

	Parameters

	component (Component) – object of this component

	
smooth.framework.functions.update_annuities.update_external_annuities(component)

	Convert the CAPEX to annuities

Annuities are written into the results dictionary of the component.

	Parameters

	component (Component) – object of this component

smooth.framework.functions.update_fitted_cost module

	
smooth.framework.functions.update_fitted_cost.get_dependant_value(component, fitting_dict, index, fixedCost)

	Get an attribute of the component as the dependant value.

	Parameters

	
	component (Component) – object of this component

	fitting_dict (dict) – usually financial or emission object of this component

	index (integer) – current position in fitting_dict

	fixedCost (string) – key of fixed type in fitting_dict

	Returns

	calculated costs using exponential fitting

	Return type

	number or None

	
smooth.framework.functions.update_fitted_cost.get_exp(component, fitting_dict, index, dependant_value)

	Case: An exponential fitting of the cost function is wanted.

Here 3 variables are used in the following order:

for 2 fitting parameters
fv_1*exp(fv_2)

for 3 fitting parameters
fv_1 + fv_2*exp(fv_3*Parameter)

	Parameters

	
	component (Component) – object of this component

	fitting_dict (dict) – usually financial or emission object of this component

	index (integer) – current position in fitting_dict

	dependant_value (number) – dependent attribute value of object

	Returns

	calculated costs using exponential fitting

	Return type

	number

	
smooth.framework.functions.update_fitted_cost.get_free(component, fitting_dict, index, dependant_value)

	Case: A “free” fitting of the cost function is wanted.

In this case, an arbitrary number of fitting parameters can be given.
They will be used in the following order: fv_1, fv_2, fv_3, … fv_n.

Function:

fv_1*dependant_value^fv_2 + fv_3*dependant_value^fv_4 + ... fv_(n-1)*dependant_value^fv_n

	Parameters

	
	component (Component) – object of this component

	fitting_dict (dict) – usually financial or emission object of this component

	index (integer) – current position in fitting_dict

	dependant_value (number) – dependent attribute value of object

	Returns

	calculated costs using “free” fitting

	Return type

	number

	Raises

	ValueError – if number of fitting values is odd

	
smooth.framework.functions.update_fitted_cost.get_poly(component, fitting_dict, index, dependant_value)

	Case: A polynomial fitting of the cost function is wanted.

In this case, an arbitrary number of fitting parameters can be given.
They will be used in the following order: fv_1, fv_2, fv_3, … fv_n.

Function:

fv_1 + fv_2*dependant_value + fv_3*dependant_value^2 + ... fv_n*dependant_value^(n-1)

It is possible to use the polynomial function to add different cost equations together.
This is achieved because the result of the initial equation used
(which can be any of the cost functions) is stored as the ‘cost’ variable, which can
then be used in a following polynomial function but now as a new free variable.
See the example_model_costs example for an applied case.

	Parameters

	
	component (Component) – object of this component

	fitting_dict (dict) – usually financial or emission object of this component

	index (integer) – current position in fitting_dict

	dependant_value (number) – dependent attribute value of object

	Returns

	calculated costs using polynomial fitting

	Return type

	number

	
smooth.framework.functions.update_fitted_cost.get_spec(component, fitting_dict, index, dependant_value)

	Case: The fitting value is multiplied with the dependant value to get the costs.

	Parameters

	
	component (Component) – object of this component

	fitting_dict (dict) – usually financial or emission object of this component

	index (integer) – current position in fitting_dict

	dependant_value (number) – dependent attribute value of object

	Returns

	calculated costs using a fitting value

	Return type

	number

	
smooth.framework.functions.update_fitted_cost.update_cost(component, fitting_dict, index, dependant_value, name)

	Update cost of component.

	Parameters

	
	component (Component) – object of this component

	fitting_dict (dict) – usually financial or emission object of this component

	index (integer) – current position in fitting_dict

	dependant_value (number) – dependent attribute value of object

	name (string) – human readable representation of attribute to be updated,
e.g. “CAPEX/OPEX” or “emissions”

	Raises

	ValueError – on unknown fitting key

	
smooth.framework.functions.update_fitted_cost.update_emissions(component, emissions)

	Calculate fixed and operational emissions for this component.

This function is calculating a fix and operational value for components
where “fix_emissions” or “op_emissions” are dependant on certain values.
The following list shows possible fitting methods. The fitting method is
chosen by the “key” value given in the “emissions” dictionary:

	“fix” –> already the fix value, nothing has to be done

	“spec” –> cost value needs to be multiplied with the dependant value

	“exp” –> exponential cost fitting

	“poly” –> polynomial cost fitting

	“free” –> polynomial cost fitting with free choosable exponents

	“variable” –> definition of multiple “fix_emissions” or “op_emissions” structures: If the emission structure changes over the size of a specific value of the component, for example because of the effects of economics of scale, the special key “variable” can be used to define multiple “fix_emissions” or “op_emissions” dicts for different ranges of this value

If multiple keys are defined, the calculations are done sequentially in order.

	Parameters

	
	component (component: Component) – object of this component

	emissions (fix_emissions or op_emissions dict) – emission object of this component

	
smooth.framework.functions.update_fitted_cost.update_financials(component, financials)

	Calculate “OPEX” or “CAPEX” for this component.

This function is calculating a fix “CAPEX” and “OPEX” value for components
where “CAPEX” and “OPEX” are dependant on certain values. The following list
shows possible fitting methods. The fitting method is chosen by the “CAPEX”
and “OPEX” key:

	“fix” –> already the fix value, nothing has to be done

	“spec” –> cost value needs to be multiplied with the dependant value

	“exp” –> exponential cost fitting

	“poly” –> polynomial cost fitting

	“free” –> polynomial cost fitting with free choosable exponents

	“variable” –> definition of multiple “CAPEX” or “OPEX” structures: If the cost structure changes over the size of a specific value of the component, for example because of the effects of economics of scale, the special key “variable” can be used to define multiple “CAPEX” or “OPEX” dicts for different ranges of this value

If multiple keys are defined, the calculations are done sequentially in order.

	Parameters

	
	component (Component) – object of this component

	financials (capex or opex dict) – financial object of this component

Module contents

smooth.optimization package

Subpackages

Submodules

Run Optimization

This is the core of the genetic algorithm (GA) used for optimization.
It uses the NSGA-II [https://www.sciencedirect.com/science/article/pii/S1877705811022466]
algorithm for multi-objective optimization of smooth components.

How to use

To use, call run_optimization with a configuration dictionary and your smooth model.
You will receive a list of Individual in return. These individuals are
pareto-optimal in regard to the given objective functions (limited to two functions).

An example configuration can be seen in run_optimization_example in the
examples directory [https://github.com/rl-institut/smooth/tree/dev/smooth/examples].

Objective functions

You may specify your custom objective functions for optimization.
These should be lambdas that take the result from run_smooth and return a value.
Keep in mind that this algorithm always tries to maximize.
In order to minimize a value, return the negative value.

Example 1: maximize power_max of the first component:

lambda x: x[0].power_max

Example 2: minimize the annual costs:

lambda x: -sum([component.results['annuity_total'] for component in x])

Result

After the given number of generations or aborting, the result is printed to the terminal.
All individuals currently on the pareto front are returned in a list.
Their values member contain the component attribute values in the order
given by the attribute_variation dictionary from the optimization params.
In addition, when SAVE_ALL_SMOOTH_RESULTS is set to True, the smooth_result
member of each individual contains the value returned by run_smooth.

Warning

Using SAVE_ALL_SMOOTH_RESULTS and writing the result
to a file will generally lead to a large file size.

Implementation

Like any GA, this implementation simulates a population which converges
to an optimal solution over multiple generations.
As there are multiple objectives, the solution takes the form of a pareto-front,
where no solution is dominated by another while maintaining distance to each other.
We take care to compute each individual configuration only once.
The normal phases of a GA still apply:

	selection

	crossover

	mutation

Population initialisation

At the start, a population is generated.
The size of the population must be declared (population_size).
Each component attribute to be varied in the smooth_model corresponds
to a gene in an individual. The genes are initialized randomly with a uniform
distribution between the minimum and maximum value of its component attribute.
These values may adhere to a step size (val_step in AttributeVariation).

Selection

We compute the fitness of all individuals in parallel.
You must set n_core to specify how many threads should be active at the same time.
This can be either a number or ‘max’ to use all virtual cores on your machine.
The fitness evaluation follows these steps:

	change your smooth model according to the individual’s component attribute values

	run smooth

	on success, compute the objective functions using the smooth result. These are the fitness values. On failure, print the error

	update the master individual on the main thread with the fitness values

	update the reference in the dictionary containing all evaluated individuals

After all individuals in the current generation have been evaluated,
they are sorted into tiers by NSGA-II fast non-dominated sorting algorithm.
Only individuals on the pareto front are retained,
depending on their distance to their neighbors.
The parent individuals stay in the population, so they can appear in the pareto front again.

Crossover

These individuals form the base of the next generation, they are parents.
For each child in the next generation, genes from two randomly selected parents
are taken (uniform crossover of independent genes).

Mutation

After crossover, each child has a random number of genes mutated.
The mutated value is around the original value, taken from a normal distribution.
Special care must be taken to stay within the component atrribute’s range
and to adhere to a strict step size.

After crossover and mutation, we check that this individual’s gene sequence
has not been encountered before (as this would not lead to new information
and waste computing time). Only then is it admitted into the new generation.

Special cases

We impose an upper limit of 1000 * population_size on the number of tries to
find new children. This counter is reset for each generation. If it is exceeded
and no new gene sequences have been found, the algorithm aborts and returns the current result.

In case no individuals have a valid smooth result, an entirely new population is generated.
No plot will be shown.
If only one individual is valid, the population is filled up with random individuals.

Gradient ascent

The solutions of the GA are pareto-optimal, but may not be at a local optimum.
Although new configurations to be evaluated are searched near the current ones,
it is not guaranteed to find slight improvements.
This is especially true if there are many dimensions to search
and the change is in only one dimension.
The chance to happen upon this single improvement is in
inverse proportion to the number of attribute variations.

Therefore, the post_processing option exists to follow the
fitness gradient for each solution after the GA has finished.
We assume that each attribute is independent of each other.
All solutions improve the same attribute at the same time.
The number of fitness evaluations may exceed the population_size,
however, the maximum number of cores used stays the same as before.

To find the local optimum of a single attribute of a solution,
we first have to find the gradient.
This is done by going one val_step in positive and negative direction.
These new children are then evaluated. Depending on the domination,
the gradient may be +val_step, -val_step or 0 (parent is optimal).
Then, this gradient is followed until the child shows no improvement.
The population may be topped up with multiples of val_step
to better utilize all cores and speed up the gradient ascent.
After all solutions have found their optimum for this attribute,
the next attribute is varied.

Plotting

To visualize the current progress,
you can set the plot_progress simulation parameter to True.
This will show the current pareto front in a pyplot window.
You can mouse over the points to show the configuration and objective values.
To keep the computation running in the background (non-blocking plots)
while listening for user events, the plotting runs in its own process.

On initialisation, a one-directional pipe is established to send data
from the main computation to the plotting process.
The process is started right at the end of the initialisation.
It needs the attribute variations and objective names for hover info and axes labels.
It also generates a multiprocessing event which checks if the process shall be stopped.

In the main loop of the process, the pipe is checked for any new data.
This incorporates a timeout to avoid high processor usage.
If new data is available, the old plot is cleared
(along with any annotations, labels and titles) and redrawn from scratch.
In any case, the window listens for a short time for user input events like mouseover.
Window close is a special event which stops the process,
but not the computation (as this runs in the separate main process).

When hovering with the mouse pointer over a point in the pareto front,
an annotation is built with the info of the Individual.
The annotation is removed when leaving the point. A simple example
of how this looks is illustrated in Figure 1. In this example,
after the first generation there is one optimal energy system
found which costs 244,416.21 EUR and produces 0 emissions.

[image: pareto_annotation.png]

Fig.1: Simple diagram of a pareto front with annotations

Sending None through the pipe makes the process show the plot until the user closes it.
This blocks the process, so no new data is received, but user events are still processed.

	
class smooth.optimization.run_optimization.AttributeVariation(iterable=(), **kwargs)

	Bases: object

Class that contains all information about an attribute that is varied by the genetic algorithm

	Parameters

	
	comp_name (string) – name of component that gets varied

	comp_attribute (string) – component attribute that gets varied

	val_min (number) – minimum value of component attribute

	val_max (number) – maximum value of component attribute (inclusive)

	val_step (number, optional) – step size of component attribute

	Variables

	num_steps – number of steps if val_step is set and not zero

	Raises

	AssertionError when any non-optional parameter is missing or val_step is negative

	
class smooth.optimization.run_optimization.Individual(values)

	Bases: object

Class for individuals evaluated by the genetic algorithm

	Parameters

	values (list) – attribute values (individual configuration)

	Variables

	
	values – given values

	fitness – fitness values depending on objective functions

	smooth_result – result from run_smooth

	
class IndividualIterator(individual)

	Bases: object

Class to iterate over gene values.

	
fitness = None

	

	
smooth_result = None

	

	
values = None

	

	
smooth.optimization.run_optimization.crossover(parent1, parent2)

	
	Uniform crossover between two parents

	Selects random (independent) genes from one parent or the other

	Parameters

	
	parent1 (Individual) – First parent

	parent2 (Individual) – Second parent

	Returns

	Crossover between parents

	Return type

	Individual

	
smooth.optimization.run_optimization.mutate(parent, attribute_variation)

	Mutate a random number of parent genes around original value, within variation

	Parameters

	
	parent (Individual) – parent individual

	attribute_variation (list of AttributeVariation) – AV for all genes in parent

	Returns

	child with some parent genes randomly mutated

	Return type

	Individual

	
smooth.optimization.run_optimization.fitness_function(index, individual, model, attribute_variation, dill_objectives, ignore_zero=False, save_results=False)

	
	Compute fitness for one individual

	Called async: copies of individual and model given

	Parameters

	
	index (int) – index within population

	individual (Individual) – individual to evaluate

	model (dict) – smooth model

	attribute_variation (list of AttributeVariation) – attribute variations

	dill_objectives (tuple of lambda-functions pickled with dill) – objective functions

	ignore_zero (boolean) – ignore components with an attribute value of zero

	save_results (boolean) – save smooth result in individual?

	Returns

	index, modified individual with fitness (None if failed)
and smooth_result (none if not save_results) set

	Return type

	tuple(int, Individual)

	
class smooth.optimization.run_optimization.PlottingProcess

	Bases: multiprocessing.context.Process

Process for plotting the intermediate results

Data is sent through (onedirectional) pipe.
It should be a dictionary containing “values” (array of Individual)
and “gen” (current generation number, displayed in title).
Send None to stop listening for new data and block the Process by showing the plot.
After the user closes the plot, the process returns and can be joined.

	Parameters

	
	pipe (multiprocessing pipe [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Pipe]) – data transfer channel

	attribute_variation (list of AttributeVariation) – AV of Optimization

	objective_names (list of strings) – descriptive names of Optimization objectives

	Variables

	
	exit_flag – Multiprocessing event signalling process should be stopped

	fig – figure for plotting

	ax – current graphic axis for plotting

	points – plotted results or None

	annot – current annotation or None

	
main()

	Main plotting thread

Loops while exit_flag is not set and user has not closed window.
Checks periodically for new data to be displayed.

	
handle_close(event)

	Called when user closes window

Signal main loop that process should be stopped.

	
hover(event)

	Called when user hovers over plot.

Checks if user hovers over point. If so, delete old annotation and
create new one with relevant info from all Indivdiuals corresponding to this point.
If user does not hover over point, remove annotation, if any.

	
class smooth.optimization.run_optimization.Optimization(iterable=(), **kwargs)

	Bases: object

Main optimization class to save GA parameters

	Parameters

	
	n_core (int or 'max') – number of threads to use.
May be ‘max’ to use all (virtual) cores

	n_generation (int) – number of generation to run

	population_size (int) – number of new children per generation.
The actual size of the population may be higher -
however, each individual is only evaluated once

	attribute_variation (list of dicts, see AttributeVariation) – attribute variation information that will be used by the GA

	model (dict) – smooth model

	objectives (2-tuple of lambda functions) – multi-objectives to optimize.
These functions take the result from run_smooth and return a float.
Positive sign maximizes, negative sign minimizes.
Defaults to minimizing annual costs and emissions

	objective_names (2-tuple of strings, optional) – descriptive names for optimization functions.
Defaults to (‘costs’, ‘emissions’)

	post_processing (boolean, optional) – improve GA solution with gradient ascent. Defaults to False

	plot_progress (boolean, optional) – plot current pareto front. Defaults to False

	ignore_zero (boolean, optional) – ignore components with an attribute value of zero. Defaults to False

	save_intermediate_results (boolean, optional) – write intermediate results to pickle file.
Only the two most recent results are saved. Defaults to False

	SAVE_ALL_SMOOTH_RESULTS (boolean, optional) – save return value of run_smooth
for all evaluated individuals.
Warning! When writing the result to file,
this may greatly increase the file size. Defaults to False

	Variables

	
	population – current individuals

	evaluated – keeps track of evaluated individuals to avoid double computation

	ax – current figure handle for plotting

	Raises

	AttributeError or AssertionError when required argument is missing or wrong

	
err_callback(err_msg)

	Async error callback

	Parameters

	err_msg (string) – error message to print

	
set_fitness(result)

	Async success callback
Update master individual in population and evaluated dictionary

	Parameters

	result (tuple(index, Individual)) – result from fitness_function

	
compute_fitness()

	Compute fitness of every individual in population with n_core worker threads.
Remove invalid individuals from population

	
save_intermediate_result(result)

	Dump result into pickle file in current working directory.
Same content as smooth.save_results.
The naming schema follows date-time-intermediate_result.pickle.
Removes second-to-last pickle file from same run.

	Parameters

	result (list of Individual) – the current results to be saved

	
gradient_ascent(result)

	Try to fine-tune result(s) with gradient ascent

Attributes are assumed to be independent and varied separately.
Solutions with the same fitness are ignored.

	Parameters

	result (list of Individual) – result from GA

	Returns

	improved result

	Return type

	list of Individual

	
run()

	Main GA function

	Returns

	pareto-optimal configurations

	Return type

	list of Individual

	
smooth.optimization.run_optimization.run_optimization(opt_config, _model)

	Entry point for genetic algorithm

	Parameters

	
	opt_config (dict) – Optimization parameters.
May have separate ga_params dictionary or define parameters directly.
See Optimization.

	_model (dict or list (legacy)) – smooth model

	Returns

	pareto-optimal configurations

	Return type

	list of Individual

Module contents

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 smooth	

 	
 	
 smooth.components	

 	
 	
 smooth.components.component	

 	
 	
 smooth.components.component_air_source_heat_pump	

 	
 	
 smooth.components.component_battery	

 	
 	
 smooth.components.component_biogas_converter	

 	
 	
 smooth.components.component_biogas_smr_psa	

 	
 	
 smooth.components.component_compressor_h2	

 	
 	
 smooth.components.component_electric_heater	

 	
 	
 smooth.components.component_electrolyzer	

 	
 	
 smooth.components.component_electrolyzer_waste_heat	

 	
 	
 smooth.components.component_energy_demand_from_csv	

 	
 	
 smooth.components.component_energy_source_from_csv	

 	
 	
 smooth.components.component_fuel_cell_chp	

 	
 	
 smooth.components.component_gas_engine_chp_biogas	

 	
 	
 smooth.components.component_gate	

 	
 	
 smooth.components.component_h2_chp	

 	
 	
 smooth.components.component_h2_refuel_cooling_system	

 	
 	
 smooth.components.component_pem_electrolyzer	

 	
 	
 smooth.components.component_power_converter	

 	
 	
 smooth.components.component_sink	

 	
 	
 smooth.components.component_storage_h2	

 	
 	
 smooth.components.component_stratified_thermal_storage	

 	
 	
 smooth.components.component_supply	

 	
 	
 smooth.components.component_trailer_gate	

 	
 	
 smooth.components.component_trailer_gate_cascade	

 	
 	
 smooth.components.component_trailer_h2_delivery	

 	
 	
 smooth.components.component_trailer_h2_delivery_cascade	

 	
 	
 smooth.components.component_trailer_h2_delivery_single	

 	
 	
 smooth.components.component_var_grid	

 	
 	
 smooth.components.external_component	

 	
 	
 smooth.components.external_component_h2_dispenser	

 	
 	
 smooth.examples	

 	
 	
 smooth.examples.example_model	

 	
 	
 smooth.examples.example_model_costs	

 	
 	
 smooth.examples.example_model_dict	

 	
 	
 smooth.examples.example_model_emissions	

 	
 	
 smooth.examples.example_model_external_components	

 	
 	
 smooth.examples.example_plotting_dicts	

 	
 	
 smooth.examples.run_optimization_example	

 	
 	
 smooth.examples.run_smooth_example	

 	
 	
 smooth.framework	

 	
 	
 smooth.framework.functions	

 	
 	
 smooth.framework.functions.calculate_external_costs	

 	
 	
 smooth.framework.functions.debug	

 	
 	
 smooth.framework.functions.functions	

 	
 	
 smooth.framework.functions.load_results	

 	
 	
 smooth.framework.functions.plot_results	

 	
 	
 smooth.framework.functions.print_results	

 	
 	
 smooth.framework.functions.save_results	

 	
 	
 smooth.framework.functions.update_annuities	

 	
 	
 smooth.framework.functions.update_fitted_cost	

 	
 	
 smooth.framework.run_smooth	

 	
 	
 smooth.framework.simulation_parameters	

 	
 	
 smooth.optimization	

 	
 	
 smooth.optimization.run_optimization	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_to_oemof_model() (smooth.components.component.Component method)

 	(smooth.components.component_air_source_heat_pump.AirSourceHeatPump method)

 	(smooth.components.component_battery.Battery method)

 	(smooth.components.component_biogas_converter.BiogasConverter method)

 	(smooth.components.component_biogas_smr_psa.BiogasSmrPsa method)

 	(smooth.components.component_compressor_h2.CompressorH2 method)

 	(smooth.components.component_electric_heater.ElectricHeater method)

 	(smooth.components.component_electrolyzer.Electrolyzer method)

 	(smooth.components.component_electrolyzer_waste_heat.ElectrolyzerWasteHeat method)

 	(smooth.components.component_energy_demand_from_csv.EnergyDemandFromCsv method)

 	(smooth.components.component_energy_source_from_csv.EnergySourceFromCsv method)

 	(smooth.components.component_fuel_cell_chp.FuelCellChp method)

 	(smooth.components.component_gas_engine_chp_biogas.GasEngineChpBiogas method)

 	(smooth.components.component_gate.Gate method)

 	(smooth.components.component_h2_chp.H2Chp method)

 	(smooth.components.component_h2_refuel_cooling_system.H2RefuelCoolingSystem method)

 	(smooth.components.component_pem_electrolyzer.PemElectrolyzer method)

 	(smooth.components.component_power_converter.PowerConverter method)

 	(smooth.components.component_sink.Sink method)

 	(smooth.components.component_storage_h2.StorageH2 method)

 	(smooth.components.component_stratified_thermal_storage.StratifiedThermalStorage method)

 	(smooth.components.component_supply.Supply method)

 	(smooth.components.component_trailer_gate.TrailerGate method)

 	(smooth.components.component_trailer_gate_cascade.TrailerGateCascade method)

 	(smooth.components.component_trailer_h2_delivery.TrailerH2Delivery method)

 	(smooth.components.component_trailer_h2_delivery_cascade.TrailerH2DeliveryCascade method)

 	(smooth.components.component_trailer_h2_delivery_single.TrailerH2DeliverySingle method)

 	
 	AirSourceHeatPump (class in smooth.components.component_air_source_heat_pump)

 	AttributeVariation (class in smooth.optimization.run_optimization)

B

 	
 	Battery (class in smooth.components.component_battery)

 	
 	BiogasConverter (class in smooth.components.component_biogas_converter)

 	BiogasSmrPsa (class in smooth.components.component_biogas_smr_psa)

C

 	
 	calc_annual_emissions() (in module smooth.framework.functions.update_annuities)

 	calc_annuity() (in module smooth.framework.functions.update_annuities)

 	calculate_compressibility_factor() (in module smooth.components.component_compressor_h2)

 	calculate_losses() (smooth.components.component_stratified_thermal_storage.StratifiedThermalStorage method)

 	calculate_storage_u_value() (smooth.components.component_stratified_thermal_storage.StratifiedThermalStorage method)

 	check_flows() (smooth.components.component_battery.Battery method)

 	check_validity() (smooth.components.component.Component method)

 	(smooth.components.external_component.ExternalComponent method)

 	choose_valid_dict() (in module smooth.framework.functions.functions)

 	Component (class in smooth.components.component)

 	
 	CompressorH2 (class in smooth.components.component_compressor_h2)

 	compute_fitness() (smooth.optimization.run_optimization.Optimization method)

 	conversion_fun_ely() (smooth.components.component_electrolyzer.Electrolyzer method)

 	(smooth.components.component_electrolyzer_waste_heat.ElectrolyzerWasteHeat method)

 	conversion_fun_thermal() (smooth.components.component_electrolyzer_waste_heat.ElectrolyzerWasteHeat method)

 	costs_for_ext_components() (in module smooth.framework.functions.calculate_external_costs)

 	create_component_obj() (in module smooth.framework.functions.functions)

 	crossover() (in module smooth.optimization.run_optimization)

 	cut_suffix() (in module smooth.framework.functions.functions)

 	cut_suffix_loop() (in module smooth.framework.functions.functions)

E

 	
 	ElectricHeater (class in smooth.components.component_electric_heater)

 	Electrolyzer (class in smooth.components.component_electrolyzer)

 	ElectrolyzerWasteHeat (class in smooth.components.component_electrolyzer_waste_heat)

 	ely_voltage_u_act() (smooth.components.component_electrolyzer.Electrolyzer method)

 	ely_voltage_u_ohm() (smooth.components.component_electrolyzer.Electrolyzer method)

 	
 	ely_voltage_u_rev() (smooth.components.component_electrolyzer.Electrolyzer method)

 	EnergyDemandFromCsv (class in smooth.components.component_energy_demand_from_csv)

 	EnergySourceFromCsv (class in smooth.components.component_energy_source_from_csv)

 	err_callback() (smooth.optimization.run_optimization.Optimization method)

 	ExternalComponent (class in smooth.components.external_component)

 	extract_flow_per_bus() (in module smooth.framework.functions.functions)

F

 	
 	fitness (smooth.optimization.run_optimization.Individual attribute)

 	
 	fitness_function() (in module smooth.optimization.run_optimization)

 	FuelCellChp (class in smooth.components.component_fuel_cell_chp)

G

 	
 	GasEngineChpBiogas (class in smooth.components.component_gas_engine_chp_biogas)

 	Gate (class in smooth.components.component_gate)

 	generate_results() (smooth.components.component.Component method)

 	(smooth.components.external_component.ExternalComponent method)

 	get_cell_temp() (smooth.components.component_electrolyzer.Electrolyzer method)

 	get_costs_and_art_costs() (smooth.components.component.Component method)

 	get_date_time_index() (in module smooth.framework.functions.functions)

 	get_dependant_value() (in module smooth.framework.functions.update_fitted_cost)

 	get_df_debug() (in module smooth.framework.functions.debug)

 	get_diameter() (smooth.components.component_stratified_thermal_storage.StratifiedThermalStorage method)

 	get_el_energy_by_h2() (smooth.components.component_fuel_cell_chp.FuelCellChp method)

 	get_electrical_energy_by_bg() (smooth.components.component_gas_engine_chp_biogas.GasEngineChpBiogas method)

 	get_electrical_energy_by_h2() (smooth.components.component_h2_chp.H2Chp method)

 	get_electricity_by_power() (smooth.components.component_electrolyzer.Electrolyzer method)

 	get_exp() (in module smooth.framework.functions.update_fitted_cost)

 	get_foreign_state_value() (smooth.components.component.Component method)

 	
 	get_free() (in module smooth.framework.functions.update_fitted_cost)

 	get_h2_production_by_electricity() (smooth.components.component_pem_electrolyzer.PemElectrolyzer method)

 	get_mass() (smooth.components.component_storage_h2.StorageH2 method)

 	get_mass_and_temp() (smooth.components.component_electrolyzer.Electrolyzer method)

 	get_mass_produced_by_current_state() (smooth.components.component_electrolyzer.Electrolyzer method)

 	get_poly() (in module smooth.framework.functions.update_fitted_cost)

 	get_pressure() (smooth.components.component_storage_h2.StorageH2 method)

 	get_sim_time_span() (in module smooth.framework.functions.functions)

 	get_spec() (in module smooth.framework.functions.update_fitted_cost)

 	get_th_energy_by_h2() (smooth.components.component_fuel_cell_chp.FuelCellChp method)

 	get_thermal_energy_by_bg() (smooth.components.component_gas_engine_chp_biogas.GasEngineChpBiogas method)

 	get_thermal_energy_by_h2() (smooth.components.component_h2_chp.H2Chp method)

 	get_volume() (smooth.components.component_storage_h2.StorageH2 method)

 	(smooth.components.component_stratified_thermal_storage.StratifiedThermalStorage method)

 	get_waste_heat() (smooth.components.component_electrolyzer_waste_heat.ElectrolyzerWasteHeat method)

 	get_waste_heat_energy_by_electricity() (smooth.components.component_pem_electrolyzer.PemElectrolyzer method)

 	gradient_ascent() (smooth.optimization.run_optimization.Optimization method)

H

 	
 	H2Chp (class in smooth.components.component_h2_chp)

 	H2Dispenser (class in smooth.components.external_component_h2_dispenser)

 	
 	H2RefuelCoolingSystem (class in smooth.components.component_h2_refuel_cooling_system)

 	handle_close() (smooth.optimization.run_optimization.PlottingProcess method)

 	hover() (smooth.optimization.run_optimization.PlottingProcess method)

I

 	
 	Individual (class in smooth.optimization.run_optimization)

 	
 	Individual.IndividualIterator (class in smooth.optimization.run_optimization)

 	interval_time_index() (in module smooth.framework.functions.functions)

L

 	
 	load_results() (in module smooth.framework.functions.load_results)

M

 	
 	main() (smooth.optimization.run_optimization.PlottingProcess method)

 	
 	mutate() (in module smooth.optimization.run_optimization)

O

 	
 	Optimization (class in smooth.optimization.run_optimization)

P

 	
 	PemElectrolyzer (class in smooth.components.component_pem_electrolyzer)

 	plot_smooth_results() (in module smooth.framework.functions.plot_results)

 	PlottingProcess (class in smooth.optimization.run_optimization)

 	PowerConverter (class in smooth.components.component_power_converter)

 	prepare_simulation() (smooth.components.component.Component method)

 	(smooth.components.component_battery.Battery method)

 	(smooth.components.component_biogas_smr_psa.BiogasSmrPsa method)

 	(smooth.components.component_compressor_h2.CompressorH2 method)

 	(smooth.components.component_storage_h2.StorageH2 method)

 	(smooth.components.component_stratified_thermal_storage.StratifiedThermalStorage method)

 	(smooth.components.component_supply.Supply method)

 	(smooth.components.component_trailer_gate.TrailerGate method)

 	(smooth.components.component_trailer_gate_cascade.TrailerGateCascade method)

 	(smooth.components.component_trailer_h2_delivery.TrailerH2Delivery method)

 	(smooth.components.component_trailer_h2_delivery_cascade.TrailerH2DeliveryCascade method)

 	(smooth.components.component_trailer_h2_delivery_single.TrailerH2DeliverySingle method)

 	
 	print_smooth_results() (in module smooth.framework.functions.print_results)

R

 	
 	read_data_file() (in module smooth.framework.functions.functions)

 	replace_at_idx() (in module smooth.framework.functions.functions)

 	
 	run() (smooth.optimization.run_optimization.Optimization method)

 	run_optimization() (in module smooth.optimization.run_optimization)

 	run_smooth() (in module smooth.framework.run_smooth)

S

 	
 	save_intermediate_result() (smooth.optimization.run_optimization.Optimization method)

 	save_results() (in module smooth.framework.functions.save_results)

 	sensible_and_latent_heats() (smooth.components.component_electrolyzer_waste_heat.ElectrolyzerWasteHeat method)

 	set_fitness() (smooth.optimization.run_optimization.Optimization method)

 	set_parameters() (smooth.components.component.Component method)

 	(smooth.components.external_component.ExternalComponent method)

 	(smooth.framework.simulation_parameters.SimulationParameters method)

 	show_debug() (in module smooth.framework.functions.debug)

 	SimulationParameters (class in smooth.framework.simulation_parameters)

 	Sink (class in smooth.components.component_sink)

 	smooth.components (module)

 	smooth.components.component (module)

 	smooth.components.component_air_source_heat_pump (module)

 	smooth.components.component_battery (module)

 	smooth.components.component_biogas_converter (module)

 	smooth.components.component_biogas_smr_psa (module)

 	smooth.components.component_compressor_h2 (module)

 	smooth.components.component_electric_heater (module)

 	smooth.components.component_electrolyzer (module)

 	smooth.components.component_electrolyzer_waste_heat (module)

 	smooth.components.component_energy_demand_from_csv (module)

 	smooth.components.component_energy_source_from_csv (module)

 	smooth.components.component_fuel_cell_chp (module)

 	smooth.components.component_gas_engine_chp_biogas (module)

 	smooth.components.component_gate (module)

 	smooth.components.component_h2_chp (module)

 	smooth.components.component_h2_refuel_cooling_system (module)

 	smooth.components.component_pem_electrolyzer (module)

 	smooth.components.component_power_converter (module)

 	smooth.components.component_sink (module)

 	smooth.components.component_storage_h2 (module)

 	smooth.components.component_stratified_thermal_storage (module)

 	smooth.components.component_supply (module)

 	smooth.components.component_trailer_gate (module)

 	
 	smooth.components.component_trailer_gate_cascade (module)

 	smooth.components.component_trailer_h2_delivery (module)

 	smooth.components.component_trailer_h2_delivery_cascade (module)

 	smooth.components.component_trailer_h2_delivery_single (module)

 	smooth.components.component_var_grid (module)

 	smooth.components.external_component (module)

 	smooth.components.external_component_h2_dispenser (module)

 	smooth.examples (module)

 	smooth.examples.example_model (module)

 	smooth.examples.example_model_costs (module)

 	smooth.examples.example_model_dict (module)

 	smooth.examples.example_model_emissions (module)

 	smooth.examples.example_model_external_components (module)

 	smooth.examples.example_plotting_dicts (module)

 	smooth.examples.run_optimization_example (module)

 	smooth.examples.run_smooth_example (module)

 	smooth.framework (module)

 	smooth.framework.functions (module)

 	smooth.framework.functions.calculate_external_costs (module)

 	smooth.framework.functions.debug (module)

 	smooth.framework.functions.functions (module)

 	smooth.framework.functions.load_results (module)

 	smooth.framework.functions.plot_results (module)

 	smooth.framework.functions.print_results (module)

 	smooth.framework.functions.save_results (module)

 	smooth.framework.functions.update_annuities (module)

 	smooth.framework.functions.update_fitted_cost (module)

 	smooth.framework.run_smooth (module)

 	smooth.framework.simulation_parameters (module)

 	smooth.optimization (module)

 	smooth.optimization.run_optimization (module)

 	smooth_result (smooth.optimization.run_optimization.Individual attribute)

 	StorageH2 (class in smooth.components.component_storage_h2)

 	StratifiedThermalStorage (class in smooth.components.component_stratified_thermal_storage)

 	Supply (class in smooth.components.component_supply)

T

 	
 	TrailerGate (class in smooth.components.component_trailer_gate)

 	TrailerGateCascade (class in smooth.components.component_trailer_gate_cascade)

 	
 	TrailerH2Delivery (class in smooth.components.component_trailer_h2_delivery)

 	TrailerH2DeliveryCascade (class in smooth.components.component_trailer_h2_delivery_cascade)

 	TrailerH2DeliverySingle (class in smooth.components.component_trailer_h2_delivery_single)

U

 	
 	update_annuities() (in module smooth.framework.functions.update_annuities)

 	update_constraints() (smooth.components.component.Component method)

 	(smooth.components.component_electrolyzer_waste_heat.ElectrolyzerWasteHeat method)

 	(smooth.components.component_fuel_cell_chp.FuelCellChp method)

 	(smooth.components.component_gas_engine_chp_biogas.GasEngineChpBiogas method)

 	(smooth.components.component_h2_chp.H2Chp method)

 	(smooth.components.component_pem_electrolyzer.PemElectrolyzer method)

 	update_cost() (in module smooth.framework.functions.update_fitted_cost)

 	update_emissions() (in module smooth.framework.functions.update_fitted_cost)

 	update_external_annuities() (in module smooth.framework.functions.update_annuities)

 	update_financials() (in module smooth.framework.functions.update_fitted_cost)

 	update_flows() (smooth.components.component.Component method)

 	(smooth.components.component_battery.Battery method)

 	(smooth.components.component_electrolyzer_waste_heat.ElectrolyzerWasteHeat method)

 	(smooth.components.component_fuel_cell_chp.FuelCellChp method)

 	(smooth.components.component_gas_engine_chp_biogas.GasEngineChpBiogas method)

 	(smooth.components.component_h2_chp.H2Chp method)

 	(smooth.components.component_pem_electrolyzer.PemElectrolyzer method)

 	
 	update_nonlinear_behaviour() (smooth.components.component_electrolyzer.Electrolyzer method)

 	(smooth.components.component_electrolyzer_waste_heat.ElectrolyzerWasteHeat method)

 	update_states() (smooth.components.component.Component method)

 	(smooth.components.component_battery.Battery method)

 	(smooth.components.component_compressor_h2.CompressorH2 method)

 	(smooth.components.component_electrolyzer.Electrolyzer method)

 	(smooth.components.component_storage_h2.StorageH2 method)

 	(smooth.components.component_stratified_thermal_storage.StratifiedThermalStorage method)

 	update_var_costs() (smooth.components.component.Component method)

 	(smooth.components.component_trailer_gate.TrailerGate method)

 	update_var_emissions() (smooth.components.component.Component method)

V

 	
 	values (smooth.optimization.run_optimization.Individual attribute)

 	
 	VarGrid (class in smooth.components.component_var_grid)

 _images/cascade_trailer_delivery.png
E] L

Production site storage Main destination site storage

Secondary destination site
storage

_images/chp_biogas_efficiency.png
Efficiency (%)
o BB Y 888 388

B
8

40 &
Nominal load (%)

—8— thermalefficiency

—e—eleatricalefficiency

Efficiency (%)
o B8 888583888

o

40 &0
Nominal load (%)

100

—— thermal efficiency
——electrical efficiency

_images/battery.png
electrical energy [Wh] electrical energy [Wh]
B —

_images/battery_losses.png
internal
losses

H(discharge

_images/electrolyzer_alkaline_waste_heat.png
electrical energy [Wh] hydrogen [ke]
e —

thermal energy [Wh]

_images/fuel_cell_chp.png
H thermal energy [Wh]
2 _
hydrogen [ke]

electrical energy [Wh]

_images/electrical_heater.png
electrical energy [Wh] 0 thermal energy [Wh]
e ——

_images/electrolyzer_alkaline.png
electrical energy [Wh] hydrogen [ke]
e —

_images/fuel_cell_chp_efficiency.png
Efficiency (%)

o8 B8 8583838

B
38

40 60
Nominal load (%)

—e—therma| efficiency

—e—electrical efficiency

Efficiency (%)

oBB8888838858

° 4

%0 &0
Nominal load (%)

100

—— thermal efficiency
——electrical efficiency

_images/gas_engine_chp_biogas.png
C H4o thermal energy [Wh]

biogas [ke]

electrical energy [Wh]

_images/air_source_heat_pump.png
electrical energy [Wh]

-

\
outside air flow l ? thermal energy [Wh]
— < -

_images/h2_refuel_cooling_system.png
electrical energy [Wh]

nav.xhtml

 Table of Contents

 		
 Welcome to SMOOTH’s documentation!

 		
 Getting started

 		
 Documentation

 		
 Installing smooth

 		
 General concept

 		
 Structure of the SMOOTH module

 		
 Components

 		
 Examples

 		
 Framework

 		
 Optimization

 		
 Got further questions on using SMOOTH?

 		
 License

 		
 smooth.components package

 		
 Building a component

 		
 Artificial costs

 		
 Foreign states

 		
 Financials

 		
 Component - The mother class of all components

 		
 Air Source Heat Pump

 		
 Scope

 		
 Concept

 		
 Battery

 		
 Scope

 		
 Concept

 		
 Biogas Converter

 		
 Scope

 		
 Concept

 		
 Biogas Steam Methane Reformer with Pressure Swing Adsorption

 		
 Scope

 		
 Concept

 		
 Compressor (Hydrogen)

 		
 Scope

 		
 Concept

 		
 Electric Heater

 		
 Scope

 		
 Concept

 		
 Electrolyzer (alkaline)

 		
 Scope

 		
 Concept

 		
 Electrolyzer Waste Heat (alkaline)

 		
 Scope

 		
 Concept

 		
 Energy Demand from CSV

 		
 Scope

 		
 Concept

 		
 Energy Source from CSV

 		
 Scope

 		
 Concept

 		
 Fuel cell CHP

 		
 Scope

 		
 Concept

 		
 Gas Engine CHP Biogas

 		
 Scope

 		
 Concept

 		
 Gate

 		
 Scope

 		
 Concept

 		
 H2 Refuel Cooling System

 		
 Scope

 		
 Concept

 		
 H2 CHP

 		
 Scope

 		
 Concept

 		
 PEM Electrolyzer

 		
 Scope

 		
 Concept

 		
 Power Converter

 		
 Scope

 		
 Concept

 		
 Sink

 		
 Scope

 		
 Concept

 		
 Storage H2

 		
 Scope

 		
 Concept

 		
 Stratified Thermal Storage

 		
 Scope

 		
 Concept

 		
 Supply

 		
 Scope

 		
 Concept

 		
 Trailer Gate

 		
 Scope

 		
 Concept

 		
 Trailer Gate Cascade

 		
 Scope

 		
 Concept

 		
 Trailer H2 Delivery

 		
 Scope

 		
 Concept

 		
 Trailer H2 Delivery Cascade

 		
 Scope

 		
 Concept

 		
 Trailer H2 Delivery Single

 		
 Scope

 		
 Concept

 		
 Variable Grid

 		
 External Components

 		
 Scope

 		
 Concept

 		
 H2 Dispenser

 		
 Scope

 		
 Concept

 		
 Submodules

 		
 Module contents

 		
 smooth.examples package

 		
 Submodules

 		
 Example Model

 		
 Example Model (costs)

 		
 Fixed cost (‘fix’)

 		
 Specific cost (‘spec’)

 		
 Exponential cost (‘exp’)

 		
 Polynomial cost (‘poly’)

 		
 Free cost (‘free’)

 		
 Addition of two functions

 		
 Variable dicts for costs (CAPEX/OPEX)

 		
 Example Model (dict)

 		
 Example Model (emissions)

 		
 Example Model (external components)

 		
 Example Model (plotting dicts)

 		
 Run Optimization Example

 		
 Run Smooth Example

 		
 Module contents

 		
 smooth.framework package

 		
 Subpackages

 		
 smooth.framework.functions package

 		
 Submodules

 		
 Run SMOOTH

 		
 How to use

 		
 Result

 		
 Implementation

 		
 Simulation Parameters

 		
 Module contents

 		
 smooth.optimization package

 		
 Subpackages

 		
 Submodules

 		
 Run Optimization

 		
 How to use

 		
 Implementation

 		
 Module contents

_images/multiple_trailer_delivery.png
=]

Production site A storage

Production site B storage

=]

Production site C storage

Destination site storage

_images/pareto_annotation.png
emissions.

0.04

0.02

0.00

-0.02

-0.04

Front for Generation #1

this_ely.power_max: 1200000.0
h2_storage.storage_capacity: 400

costs: -244416.21423308505
emissions: 0.0

~255000

-250000 -245000 -240000 —235000
costs

_images/h2_storage.png
hydrogen [ke]
hydrogen [ke]

H,

_images/hydrogen_compressor.png
electrical energy [Wh]

-

low pressure hydrogen high pressure hydrogen

kel — [kel
—_— é —_—

_images/power_converter.png
AC/DC electric energy [W]| ' DC/AC electric energy [W] I

_images/run_smooth.png
vV vy vy vyy

-

SMOOTH

Components
Costs

Inputs

States
Balancing groups

oemof model

&

> Energy- and massflow
» New states

0emofsy,

_images/pem_electrolyzer.png
electrical energy [Wh] hydrogen [ke]
e —

thermal energy [Wh]

_images/pem_electrolyzer_efficiency.png
Effcency (%)

oB5B¥E8BIBEE

©° @
Nominalload (%)

—e—h2production efficency

Efficiency (%)

oBB888B83IBLE

0 ®
Nominaiload (%)

——thermateficarey
—— h2producton effceney

_images/single_trailer_delivery.png
Production site storage Destination site storage

_images/steam_methane_reformer.png
electrical energy [Wh]

-

biogas [kg] hydrogen [ke]

N

_images/stratified_thermal_storage.png
thermal energy [Wh] thermal energy [Wh]
_

Thigh

_static/comment-bright.png

_images/trailer_h2_delivery.png
hydrogen [ke]
hydrogen [ke]

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

